Menu Close

If-P-RE-2-R-B-2-make-R-the-subject-of-the-formula-




Question Number 89153 by Jidda28 last updated on 15/Apr/20
If P=((RE^2 )/((R+B)^2 )) make R the subject of the formula.
$$\mathrm{If}\:\mathrm{P}=\frac{\mathrm{RE}^{\mathrm{2}} }{\left(\mathrm{R}+\mathrm{B}\right)^{\mathrm{2}} }\:\mathrm{make}\:\mathrm{R}\:\mathrm{the}\:\mathrm{subject}\:\mathrm{of}\:\mathrm{the}\:\mathrm{formula}. \\ $$
Answered by MJS last updated on 15/Apr/20
p(r+b)^2 =re^2   (r+b)^2 =(e^2 /p)r  r^2 +(2b−(e^2 /p))r+b^2 =0  r=(e^2 /(2p))−b±(√((b−(e^2 /(2p)))^2 −b^2 ))  r=(e^2 /(2p))−b±(e/(2p))(√(e^2 −4bp))
$${p}\left({r}+{b}\right)^{\mathrm{2}} ={re}^{\mathrm{2}} \\ $$$$\left({r}+{b}\right)^{\mathrm{2}} =\frac{{e}^{\mathrm{2}} }{{p}}{r} \\ $$$${r}^{\mathrm{2}} +\left(\mathrm{2}{b}−\frac{{e}^{\mathrm{2}} }{{p}}\right){r}+{b}^{\mathrm{2}} =\mathrm{0} \\ $$$${r}=\frac{{e}^{\mathrm{2}} }{\mathrm{2}{p}}−{b}\pm\sqrt{\left({b}−\frac{{e}^{\mathrm{2}} }{\mathrm{2}{p}}\right)^{\mathrm{2}} −{b}^{\mathrm{2}} } \\ $$$${r}=\frac{{e}^{\mathrm{2}} }{\mathrm{2}{p}}−{b}\pm\frac{{e}}{\mathrm{2}{p}}\sqrt{{e}^{\mathrm{2}} −\mathrm{4}{bp}} \\ $$
Commented by Jidda28 last updated on 15/Apr/20
thank you sir
$$\mathrm{thank}\:\mathrm{you}\:\mathrm{sir} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *