Menu Close

If-p-sin-pi-18-sin-5pi-18-sin-7pi-18-find-the-value-of-p-




Question Number 105766 by bramlex last updated on 31/Jul/20
If p = sin ((π/(18)))sin (((5π)/(18)))sin (((7π)/(18)))  find the value of p.
Ifp=sin(π18)sin(5π18)sin(7π18)findthevalueofp.
Answered by som(math1967) last updated on 31/Jul/20
let (π/(18))=α  ∴p=sinαsin5αsin7α  =sinαsin (6α−α)sin (6α+α)  =sin α{sin^2 6α−sin^2 α}  =sin(π/(18)){sin^2 (π/3) −sin^2 (π/(18))}  =sin(π/(18)){(3/4)−sin^2 (π/(18))}  =(1/4)(3sin(π/(18)) −4sin^3 (π/(18)))  =(1/4)×sin3.(π/(18))  =(1/4)×(1/2)=(1/8)  ∴p=(1/8) ans
letπ18=αp=sinαsin5αsin7α=sinαsin(6αα)sin(6α+α)=sinα{sin26αsin2α}=sinπ18{sin2π3sin2π18}=sinπ18{34sin2π18}=14(3sinπ184sin3π18)=14×sin3.π18=14×12=18p=18ans
Commented by 1549442205PVT last updated on 01/Aug/20
Third line ⇏fourth line .Please,sir see  once again and check?
Thirdlinefourthline.Please,sirseeonceagainandcheck?
Commented by bobhans last updated on 01/Aug/20
sin α{sin 6α cos α−cos 6α sin α}{sin  6α cos α+cos 6α sin α}   ⇔ sin α { (sin 6α cos α)^2 −(cos 6α sin α)^2 }  sorry sir. your answer something  wrong
sinα{sin6αcosαcos6αsinα}{sin6αcosα+cos6αsinα}sinα{(sin6αcosα)2(cos6αsinα)2}sorrysir.youranswersomethingwrong
Commented by som(math1967) last updated on 01/Aug/20
sin(A−B)sin(A+B)  =sin^2 A−sin^2 B  ∴sin(6α−α)sin (6α+α)  =sin^2 6α−sin^2 α  α=(π/(18)) ⇒6α=(π/3)  ∴sinα(sin^2 6α−sin^2 α)  =sinα(sin^2 (π/3) −sin^2 α)  =sinα((3/4) −sin^2 α)  =sinα(((3−4sin^2 α)/4))  =((3sinα−4sin^3 α)/4)  =((sin3α)/4)  =((sin(π/6))/4)    [∵3α=3×(π/(18))=(π/6)]  =(1/4)×(1/2)=(1/8)
sin(AB)sin(A+B)=sin2Asin2Bsin(6αα)sin(6α+α)=sin26αsin2αα=π186α=π3sinα(sin26αsin2α)=sinα(sin2π3sin2α)=sinα(34sin2α)=sinα(34sin2α4)=3sinα4sin3α4=sin3α4=sinπ64[3α=3×π18=π6]=14×12=18
Commented by som(math1967) last updated on 01/Aug/20
sin^2 6αcos^2 α−cos^2 6αsin^2 α  =sin^2 6α(1−sin^2 α)                    −(1−sin^2 6α)sin^2 α  =sin^2 6α −sin^2 6αsin^2 α                 −sin^2 α +sin^2 6αsin^2 α  =sin^2 6α−sin^2 α
sin26αcos2αcos26αsin2α=sin26α(1sin2α)(1sin26α)sin2α=sin26αsin26αsin2αsin2α+sin26αsin2α=sin26αsin2α
Commented by bobhans last updated on 01/Aug/20
sin (A−B)sin (A+B) = −(1/2)(−2sin(A−B)sin (A+B))  −(1/2)(cos 2A−cos 2B ) = −(1/2)(1−2sin^2 A−(1−2sin^2 B))  = −(1/2)(−2sin^2 A+2sin^2 B)  = sin^2 A−sin^2 B.   hahaha..yes sir . you are right
sin(AB)sin(A+B)=12(2sin(AB)sin(A+B))12(cos2Acos2B)=12(12sin2A(12sin2B))=12(2sin2A+2sin2B)=sin2Asin2B.hahaha..yessir.youareright
Commented by 1549442205PVT last updated on 03/Aug/20
Thank both sirs.
Thankbothsirs.
Commented by som(math1967) last updated on 01/Aug/20
Welcome
Welcome

Leave a Reply

Your email address will not be published. Required fields are marked *