Menu Close

if-p-x-2-2p-x-x-2-5x-3-find-p-x-




Question Number 129489 by mr W last updated on 16/Jan/21
if p(x+2)−2p(x)=x^2 −5x−3  find p(x)
ifp(x+2)2p(x)=x25x3findp(x)
Answered by bramlexs22 last updated on 16/Jan/21
let p(x)=ax^2 +bx+c  p(x+2)=a(x+2)^2 +b(x+2)+c                   = ax^2 +(4a+b)x+(4a+2b+c)  2p(x)= 2ax^2 +2bx+2c   p(x+2)−2p(x)= −ax^2 +(4a−b)x+(4a+2b−c)  −ax^2 +(4a−b)x+(4a+2b−c)=x^2 −5x−3    { ((a=−1)),((−4−b=−5 ; b=1 )),((−4+2−c=−3 ; c = 1)) :}  p(x)=−x^2 +x+1
letp(x)=ax2+bx+cp(x+2)=a(x+2)2+b(x+2)+c=ax2+(4a+b)x+(4a+2b+c)2p(x)=2ax2+2bx+2cp(x+2)2p(x)=ax2+(4ab)x+(4a+2bc)ax2+(4ab)x+(4a+2bc)=x25x3{a=14b=5;b=14+2c=3;c=1p(x)=x2+x+1
Commented by mr W last updated on 16/Jan/21
thanks sir!  but is this solution unique? are there  any other possiblities?
thankssir!butisthissolutionunique?arethereanyotherpossiblities?
Answered by liberty last updated on 16/Jan/21
let p(x+2)=u_(n+2)  and p(x)=u_n   homogenous equation λ^2 −2=0 ; λ=±(√2)  u_n =C_1 ((√2))^n +C_2 (−(√2))^n =λ((√2))^n   particular solution : ax^2 +bx+c → { ((u_(n+1) =2ax+b)),((u_(n+2) =2a)) :}  comparing : 2a−(ax^2 +bx+c)=x^2 −5x−3   −ax^2 −bx+2a−c=x^2 −5x−3    { ((a=−1 ; b=5)),((−2−c=−3 ; c=1)) :}  ∴ p(x)=λ((√2) )^x −x^2 +5x+1
letp(x+2)=un+2andp(x)=unhomogenousequationλ22=0;λ=±2un=C1(2)n+C2(2)n=λ(2)nparticularsolution:ax2+bx+c{un+1=2ax+bun+2=2acomparing:2a(ax2+bx+c)=x25x3ax2bx+2ac=x25x3{a=1;b=52c=3;c=1p(x)=λ(2)xx2+5x+1
Commented by mr W last updated on 16/Jan/21
thanks!
thanks!
Commented by liberty last updated on 16/Jan/21
yes...i meant like that.
yesimeantlikethat.

Leave a Reply

Your email address will not be published. Required fields are marked *