Menu Close

If-P-x-aX-3-bX-c-Q-X-a-0-has-the-roots-x-1-x-2-and-x-3-such-that-x-1-x-2-x-3-then-prove-that-x-1-0-if-and-only-if-b-c-




Question Number 153161 by mathdanisur last updated on 05/Sep/21
If  P(x)=aX^3 +bX+c ∈ Q[X]  ;  (a≠0)  has the roots  x_1  , x_2   and  x_3   such that  x_1  = x_2 x_3   then prove that x_1  = 0 if and only if b=c
IfP(x)=aX3+bX+cQ[X];(a0)hastherootsx1,x2andx3suchthatx1=x2x3thenprovethatx1=0ifandonlyifb=c
Answered by mr W last updated on 05/Sep/21
x_1 +x_2 +x_3 =0  x_1 (x_2 +x_3 )+x_2 x_3 =(b/a)  x_1 x_2 x_3 =−(c/a)    with x_1 =x_2 x_3 :  −x_1 ^2 +x_1 =(b/a)  x_1 ^2 =−(c/a)  ⇒x_1 =((b−c)/a)  x_1 =0 if and only if b−x=0 ⇒b=c
x1+x2+x3=0x1(x2+x3)+x2x3=bax1x2x3=cawithx1=x2x3:x12+x1=bax12=cax1=bcax1=0ifandonlyifbx=0b=c
Commented by mathdanisur last updated on 05/Sep/21
veri nice thank you ser
verinicethankyouser

Leave a Reply

Your email address will not be published. Required fields are marked *