Menu Close

If-P-x-is-a-polynomial-whose-sum-of-coefficients-is-3-and-P-x-can-be-factorised-into-two-polynomials-Q-x-R-x-with-integer-coefficients-the-sum-of-the-coefficients-Q-x-2-R-x-2-is-




Question Number 110374 by Aina Samuel Temidayo last updated on 28/Aug/20
If P(x) is a polynomial whose sum of  coefficients is 3 and P(x) can be  factorised into two polynomials  Q(x),R(x) with integer coefficients,  the sum of the coefficients  Q(x)^2 +R(x)^2  is
IfP(x)isapolynomialwhosesumofcoefficientsis3andP(x)canbefactorisedintotwopolynomialsQ(x),R(x)withintegercoefficients,thesumofthecoefficientsQ(x)2+R(x)2is
Answered by mr W last updated on 28/Aug/20
Q(x)=Σ_(i=0) ^m q_i x^i   R(x)=Σ_(j=0) ^n r_j x^j   P(x)=Q(x)R(x)=(Σ_(i=0) ^m q_i x^i )(Σ_(j=0) ^n r_j x^j )  P(1)=(Σ_(i=0) ^m q_i )(Σ_(j=0) ^n r_j )=3  ⇒Σ_(i=0) ^m q_i =±1, Σ_(j=0) ^n r_j =±3 or Σ_(i=0) ^m q_i =±3, Σ_(j=0) ^n r_j =±1    sum of coef. of Q(x)^2 +R(x)^2  is  Q(1)^2 +R(1)^2 =(Σ_(i=0) ^m q_i )^2 +(Σ_(j=0) ^n r_j )^2 =10
Q(x)=mi=0qixiR(x)=nj=0rjxjP(x)=Q(x)R(x)=(mi=0qixi)(nj=0rjxj)P(1)=(mi=0qi)(nj=0rj)=3mi=0qi=±1,nj=0rj=±3ormi=0qi=±3,nj=0rj=±1sumofcoef.ofQ(x)2+R(x)2isQ(1)2+R(1)2=(mi=0qi)2+(nj=0rj)2=10
Commented by Aina Samuel Temidayo last updated on 28/Aug/20
Thanks.
Thanks.
Answered by floor(10²Eta[1]) last updated on 28/Aug/20
P(1)=3  P(x)=Q(x).R(x)  F(x)=Q(x)^2 +R(x)^2   F(1)=Q(1)^2 +R(1)^2   Q(x)=((P(x))/(R(x)))∴Q(x)^2 =((P(x)^2 )/(R(x)^2 ))  ⇒Q(1)^2 =((R(1)^2 )/(P(1)^2 ))∴Q(1)^2 =((R(1)^2 )/9)  F(1)=R(1)^2 .((10)/9)  since Q(x) and R(x) ∈ Z[x]  ⇒the sum of coefficients of these polynomials  also have to be an integer.  so 3=R(1).Q(1)  ⇒R(1)=3 and Q(1)=1  or R(1)=1 and Q(1)=3  or R(1)=−1 and Q(1)=−3  or R(1)=−3 and Q(1)=−1  ∴F(1)=((10)/9)R(1)^2 =10 or ((10)/9)  but F(x) ∈ Z[x] because F(x)=Q(x)^2 +R(x)^2   so F(1)∈Z⇒F(1)=10
P(1)=3P(x)=Q(x).R(x)F(x)=Q(x)2+R(x)2F(1)=Q(1)2+R(1)2Q(x)=P(x)R(x)Q(x)2=P(x)2R(x)2Q(1)2=R(1)2P(1)2Q(1)2=R(1)29F(1)=R(1)2.109sinceQ(x)andR(x)Z[x]thesumofcoefficientsofthesepolynomialsalsohavetobeaninteger.so3=R(1).Q(1)R(1)=3andQ(1)=1orR(1)=1andQ(1)=3orR(1)=1andQ(1)=3orR(1)=3andQ(1)=1F(1)=109R(1)2=10or109butF(x)Z[x]becauseF(x)=Q(x)2+R(x)2soF(1)ZF(1)=10
Commented by Aina Samuel Temidayo last updated on 28/Aug/20
Thanks.
Thanks.

Leave a Reply

Your email address will not be published. Required fields are marked *