Menu Close

if-pi-is-rational-then-there-exists-a-I-n-v-2n-n-0-pi-x-n-x-pi-n-sin-x-dx-can-someone-give-a-easier-way-to-expaned-this-




Question Number 60621 by fjdjdcjv last updated on 22/May/19
if π is rational then there  exists a I_n =(v^(2n) /(n!))∫_0 ^π x^n (x−π)^n sin(x)dx  can someone give a easier way to expaned this
ifπisrationalthenthereexistsaIn=v2nn!π0xn(xπ)nsin(x)dxcansomeonegiveaeasierwaytoexpanedthis
Commented by MJS last updated on 23/May/19
I don′t understand. we can solve the integral  for any given n∈N even if π∉Q. and what is v?
Idontunderstand.wecansolvetheintegralforanygivennNevenifπQ.andwhatisv?
Commented by fjdjdcjv last updated on 23/May/19
π=(u/v)
π=uv
Commented by MJS last updated on 23/May/19
ok. still the integral exists, quite apart from  the nature of π  another question: sin x with which period,  2π or 2(u/v)?  is it (v^(2n) /(n!))∫_0 ^(u/v) x^n (x−(u/v))sin ((vπx)/u) dx?  or shall we calculate I_n  using the usual π  and then show that π∉Q?
ok.stilltheintegralexists,quiteapartfromthenatureofπanotherquestion:sinxwithwhichperiod,2πor2uv?isitv2nn!uv0xn(xuv)sinvπxudx?orshallwecalculateInusingtheusualπandthenshowthatπQ?
Commented by MJS last updated on 23/May/19
sorry this is quite confusing me
sorrythisisquiteconfusingme
Commented by MJS last updated on 23/May/19
I_1 =−4v^2   I_2 =2v^4 (−π^2 +12)  I_3 =24v^6 (π^2 −10)  I_4 =2v^8 (π^4 −180π^2 +1680)  I_5 =60v^(10) (−π^4 +112π^2 −1008)  ...  all calculated with the usual π  if π=(u/v)  I_1 =−4v^2   I_2 =−2(u^2 −12v^2 )v^2   I_3 =24(u^2 −10v^2 )v^4   I_4 =2(u^4 −180u^2 v^2 +1680v^4 )v^4   I_5 =−60(u^4 −112u^2 v^2 +1008v^4 )v^6   ...  but what do we know now?
I1=4v2I2=2v4(π2+12)I3=24v6(π210)I4=2v8(π4180π2+1680)I5=60v10(π4+112π21008)allcalculatedwiththeusualπifπ=uvI1=4v2I2=2(u212v2)v2I3=24(u210v2)v4I4=2(u4180u2v2+1680v4)v4I5=60(u4112u2v2+1008v4)v6butwhatdoweknownow?

Leave a Reply

Your email address will not be published. Required fields are marked *