Question Number 31147 by momo last updated on 03/Mar/18
$${if}\:{point}\:{of}\:{intersection}\:{of}\:{curves} \\ $$$${C}_{\mathrm{1}} =\lambda{x}^{\mathrm{2}} +\mathrm{4}{y}^{\mathrm{2}} −\mathrm{2}{xy}−\mathrm{9}{x}+\mathrm{3}\:{and} \\ $$$${C}_{\mathrm{2}} =\mathrm{2}{x}^{\mathrm{2}} +\mathrm{3}{y}^{\mathrm{2}} −\mathrm{4}{xy}+\mathrm{3}{x}−\mathrm{1}\: \\ $$$${subtends}\:{a}\:{right}\:{angle}\:{at}\:{origin}\:{the} \\ $$$${value}\:{of}\:\lambda\:{is}? \\ $$
Answered by ajfour last updated on 03/Mar/18
$$\:\:\:\:\:\frac{{y}_{\mathrm{1}} }{{x}_{\mathrm{1}} }={m}_{\mathrm{1}} \:\:\:{and}\:\:\:\frac{{y}_{\mathrm{2}} }{{x}_{\mathrm{2}} }\:={m}_{\mathrm{2}} \:\left({say}\right) \\ $$$${m}_{\mathrm{1}} {m}_{\mathrm{2}} =−\mathrm{1} \\ $$$${As}\:{points}\:{of}\:{intersection}\:{say} \\ $$$${A}\left({x}_{\mathrm{1}} ,{y}_{\mathrm{1}} \right)\:{and}\:{B}\left({x}_{\mathrm{2}} ,{y}_{\mathrm{2}} \right)\:{lies}\:{on} \\ $$$${both}\:{curves} \\ $$$${C}_{\mathrm{1}} +\mathrm{3}{C}_{\mathrm{2}} \:{gives} \\ $$$$\left(\lambda+\mathrm{6}\right){x}^{\mathrm{2}} +\mathrm{13}{y}^{\mathrm{2}} −\mathrm{14}{xy}\:=\:\mathrm{0} \\ $$$$\Rightarrow\:\left(\lambda+\mathrm{6}\right)+\mathrm{13}\left(\frac{{y}}{{x}}\right)^{\mathrm{2}} −\mathrm{14}\left(\frac{{y}}{{x}}\right)=\mathrm{0} \\ $$$${as}\:\:{m}_{\mathrm{1}} ,\:{m}_{\mathrm{2}} \:\:{are}\:{roots}\:{of}\:{this}\:{eq}. \\ $$$$\:\:\:{m}_{\mathrm{1}} {m}_{\mathrm{2}} =\:\frac{\lambda+\mathrm{6}}{\mathrm{13}}\:=\:−\mathrm{1} \\ $$$$\Rightarrow\:\:\boldsymbol{\lambda}\:=\:−\mathrm{19}\:\:. \\ $$
Commented by momo last updated on 03/Mar/18
$${yes}\:−\mathrm{19}\:{is}\:{right}\:{answer} \\ $$
Commented by momo last updated on 03/Mar/18
$${how}\:{C}_{\mathrm{1}} +\mathrm{3}{C}_{\mathrm{2}} \:{please}\:{explain} \\ $$
Commented by ajfour last updated on 03/Mar/18
$${to}\:{remove}\:{the}\:{linear}\:{terms}. \\ $$
Commented by ajfour last updated on 03/Mar/18
$${in}\:{English}\:{sir}\:? \\ $$
Commented by mrW2 last updated on 03/Mar/18
Ausgezeichnet!
Commented by mrW2 last updated on 03/Mar/18
Excellent! Outstanding!
Commented by ajfour last updated on 03/Mar/18
$${thanks}\:{for}\:{the}\:{appreciation},\:{Sir}! \\ $$