Menu Close

if-positive-integer-x-satisfies-x-2-4x-56-14-mod-17-what-is-the-minimum-value-of-x-




Question Number 110358 by bobhans last updated on 28/Aug/20
if positive integer x satisfies x^2 −4x+56 ≡14 (mod 17)   , what is the minimum value of x.
ifpositiveintegerxsatisfiesx24x+5614(mod17),whatistheminimumvalueofx.
Answered by john santu last updated on 28/Aug/20
⇔x^2 −4x+4 + 52 = 14 (mod 17)  ⇔ (x−2)^2  = −38 (mod 17 )  ⇔ (x−2)^2  = 13 (mod 17)  now we need to see whether 13 is   square modulo 17.   ⇒ 13 = 13+ 3.17 = 64 (mod 17)  then ⇔ (x−2)^2 =64 (mod 17)  ⇔ (x−2)^2  = 8^2  (mod 17)     { ((x−2=8 (mod 17))),((x−2=−8 (mod 17))) :}   { ((x=10 (mod 17))),((x=11 (mod 17))) :}  minimum value of x is 10
x24x+4+52=14(mod17)(x2)2=38(mod17)(x2)2=13(mod17)nowweneedtoseewhether13issquaremodulo17.13=13+3.17=64(mod17)then(x2)2=64(mod17)(x2)2=82(mod17){x2=8(mod17)x2=8(mod17){x=10(mod17)x=11(mod17)minimumvalueofxis10

Leave a Reply

Your email address will not be published. Required fields are marked *