Menu Close

If-pqr-1-Hence-evaluate-1-1-e-f-1-1-1-f-g-1-1-1-g-e-1-




Question Number 43706 by Tawa1 last updated on 14/Sep/18
If  pqr = 1  Hence evaluate:  (1/(1 + e + f^(−1) ))  +  (1/(1 + f + g^(−1) ))  +  (1/(1 + g + e^(−1) ))
$$\mathrm{If}\:\:\mathrm{pqr}\:=\:\mathrm{1} \\ $$$$\mathrm{Hence}\:\mathrm{evaluate}:\:\:\frac{\mathrm{1}}{\mathrm{1}\:+\:\mathrm{e}\:+\:\mathrm{f}^{−\mathrm{1}} }\:\:+\:\:\frac{\mathrm{1}}{\mathrm{1}\:+\:\mathrm{f}\:+\:\mathrm{g}^{−\mathrm{1}} }\:\:+\:\:\frac{\mathrm{1}}{\mathrm{1}\:+\:\mathrm{g}\:+\:\mathrm{e}^{−\mathrm{1}} } \\ $$
Commented by Joel578 last updated on 14/Sep/18
p,q,r and e,f,g ?
$${p},{q},{r}\:\mathrm{and}\:{e},{f},{g}\:? \\ $$
Commented by Tawa1 last updated on 14/Sep/18
No value is given sir. That is just the question
$$\mathrm{No}\:\mathrm{value}\:\mathrm{is}\:\mathrm{given}\:\mathrm{sir}.\:\mathrm{That}\:\mathrm{is}\:\mathrm{just}\:\mathrm{the}\:\mathrm{question} \\ $$
Answered by tanmay.chaudhury50@gmail.com last updated on 14/Sep/18
(1/(1+p+q^(−1) ))+(1/(1+q+r^(−1) ))+(1/(1+r+p^(−1) ))  (q/(q+pq+1))+(1/(1+q+pq))+(1/(1+(1/(pq))+(1/p)))  (q/(q+pq+1))+(1/(1+q+pq))+((pq)/(pq+1+q))  =((q+1+pq)/(q+pq+1))=1
$$\frac{\mathrm{1}}{\mathrm{1}+{p}+{q}^{−\mathrm{1}} }+\frac{\mathrm{1}}{\mathrm{1}+{q}+{r}^{−\mathrm{1}} }+\frac{\mathrm{1}}{\mathrm{1}+{r}+{p}^{−\mathrm{1}} } \\ $$$$\frac{{q}}{{q}+{pq}+\mathrm{1}}+\frac{\mathrm{1}}{\mathrm{1}+{q}+{pq}}+\frac{\mathrm{1}}{\mathrm{1}+\frac{\mathrm{1}}{{pq}}+\frac{\mathrm{1}}{{p}}} \\ $$$$\frac{{q}}{{q}+{pq}+\mathrm{1}}+\frac{\mathrm{1}}{\mathrm{1}+{q}+{pq}}+\frac{{pq}}{{pq}+\mathrm{1}+{q}} \\ $$$$=\frac{{q}+\mathrm{1}+{pq}}{{q}+{pq}+\mathrm{1}}=\mathrm{1} \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$
Commented by Tawa1 last updated on 14/Sep/18
wow,  God bless you sir
$$\mathrm{wow},\:\:\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir} \\ $$
Commented by Meritguide1234 last updated on 15/Sep/18
you have solved different problem
$${you}\:{have}\:{solved}\:{different}\:{problem} \\ $$
Commented by Tawa1 last updated on 14/Sep/18
I understand. the solution is correct.  God bless mr tanmay
$$\mathrm{I}\:\mathrm{understand}.\:\mathrm{the}\:\mathrm{solution}\:\mathrm{is}\:\mathrm{correct}.\:\:\mathrm{God}\:\mathrm{bless}\:\mathrm{mr}\:\mathrm{tanmay} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *