Menu Close

if-q-1-and-x-gt-1-then-1-x-q-1-x-q-1-x-1-qx-




Question Number 145191 by mathdanisur last updated on 03/Jul/21
if  q≥1  and  x>−1  then:  (1+x)^q  ≥ (1+x)^(q−1)  + x ≥ 1+qx
$${if}\:\:{q}\geqslant\mathrm{1}\:\:{and}\:\:{x}>−\mathrm{1}\:\:{then}: \\ $$$$\left(\mathrm{1}+{x}\right)^{\boldsymbol{{q}}} \:\geqslant\:\left(\mathrm{1}+{x}\right)^{\boldsymbol{{q}}−\mathrm{1}} \:+\:{x}\:\geqslant\:\mathrm{1}+{qx} \\ $$
Answered by Olaf_Thorendsen last updated on 03/Jul/21
(1+x)^q  = (1+x)^(q−1) (1+x)  = (1+x)^(q−1) +x(1+x)^(q−1)   ≥ (1+x)^(q−1) +x  ≥ 1+(q−1)x+x = 1+qx
$$\left(\mathrm{1}+{x}\right)^{{q}} \:=\:\left(\mathrm{1}+{x}\right)^{{q}−\mathrm{1}} \left(\mathrm{1}+{x}\right) \\ $$$$=\:\left(\mathrm{1}+{x}\right)^{{q}−\mathrm{1}} +{x}\left(\mathrm{1}+{x}\right)^{{q}−\mathrm{1}} \\ $$$$\geqslant\:\left(\mathrm{1}+{x}\right)^{{q}−\mathrm{1}} +{x} \\ $$$$\geqslant\:\mathrm{1}+\left({q}−\mathrm{1}\right){x}+{x}\:=\:\mathrm{1}+{qx} \\ $$
Commented by mathdanisur last updated on 03/Jul/21
thank you Ser, cool
$${thank}\:{you}\:{Ser},\:{cool} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *