Menu Close

if-q-1-sin-then-prove-that-sec-tan-2-1-q-




Question Number 159845 by abdullah_ff last updated on 21/Nov/21
if q = 1−sinθ; then prove that  (secθ − tanθ)^2  = (1/q)
ifq=1sinθ;thenprovethat(secθtanθ)2=1q
Commented by tounghoungko last updated on 21/Nov/21
sin θ = 1−q    cos θ =(√(1−(1−2q+q^2 )))=(√(2q−q^2 ))   sec θ=(1/( (√(2q−q^2 )))) ; tan θ = ((1−q)/( (√(2q−q^2 ))))   sec θ−tan θ = (q/( (√(2q−q^2 ))))  (sec θ−tan θ)^2  = (q^2 /(2q−q^2 ))
sinθ=1qcosθ=1(12q+q2)=2qq2secθ=12qq2;tanθ=1q2qq2secθtanθ=q2qq2(secθtanθ)2=q22qq2
Answered by JDamian last updated on 21/Nov/21
(((1−sinθ)/(cosθ)))^2 =(q^2 /(cos^2 θ))=(q^2 /(1−sin^2 θ))=(q^2 /(1−(1−q)^2 ))=  (q^2 /(1−1−q^2 +2q))=(q/(2−q))   ■
(1sinθcosθ)2=q2cos2θ=q21sin2θ=q21(1q)2=q211q2+2q=q2q◼
Answered by som(math1967) last updated on 21/Nov/21
(secθ−tanθ)^2   =(((1−sinθ)/(cosθ)))^2   =(((1−sinθ)^2 )/(cos^2 θ))  =(((1−sinθ)^2 )/((1+sinθ)(1−sinθ)))  =((1−sinθ)/(1+sinθ))≠(1/q)
(secθtanθ)2=(1sinθcosθ)2=(1sinθ)2cos2θ=(1sinθ)2(1+sinθ)(1sinθ)=1sinθ1+sinθ1q

Leave a Reply

Your email address will not be published. Required fields are marked *