Menu Close

If-Q-2-x-y-1-5-x-lt-1-5-y-lt-6-Find-Q-max-




Question Number 192054 by cortano12 last updated on 07/May/23
   If Q = ((2−x)/(y−1)) ; −5≤x<−1 , 5≤y<6     Find Q_(max) .
$$\:\:\:\mathrm{If}\:\mathrm{Q}\:=\:\frac{\mathrm{2}−\mathrm{x}}{\mathrm{y}−\mathrm{1}}\:;\:−\mathrm{5}\leqslant\mathrm{x}<−\mathrm{1}\:,\:\mathrm{5}\leqslant\mathrm{y}<\mathrm{6} \\ $$$$\:\:\:\mathrm{Find}\:\mathrm{Q}_{\mathrm{max}} .\: \\ $$
Answered by mehdee42 last updated on 07/May/23
−5≤x<−1⇒^(×−1)  1<−x≤5⇒^(+2) 3<2−x≤7  (i)  5≤y<6⇒^(−1) 4≤y−1<5 ⇒^↕ (1/5)<(1/(y−1))≤(1/4)  (ii)  (i)×(ii)⇒ (3/5)<((2−x)/(y−1))≤(7/4) ⇒Q_(max) =(7/4) ✓
$$−\mathrm{5}\leqslant{x}<−\mathrm{1}\overset{×−\mathrm{1}} {\Rightarrow}\:\mathrm{1}<−{x}\leqslant\mathrm{5}\overset{+\mathrm{2}} {\Rightarrow}\mathrm{3}<\mathrm{2}−{x}\leqslant\mathrm{7}\:\:\left({i}\right) \\ $$$$\mathrm{5}\leqslant{y}<\mathrm{6}\overset{−\mathrm{1}} {\Rightarrow}\mathrm{4}\leqslant{y}−\mathrm{1}<\mathrm{5}\:\overset{\updownarrow} {\Rightarrow}\frac{\mathrm{1}}{\mathrm{5}}<\frac{\mathrm{1}}{{y}−\mathrm{1}}\leqslant\frac{\mathrm{1}}{\mathrm{4}}\:\:\left({ii}\right) \\ $$$$\left({i}\right)×\left({ii}\right)\Rightarrow\:\frac{\mathrm{3}}{\mathrm{5}}<\frac{\mathrm{2}−{x}}{{y}−\mathrm{1}}\leqslant\frac{\mathrm{7}}{\mathrm{4}}\:\Rightarrow{Q}_{{max}} =\frac{\mathrm{7}}{\mathrm{4}}\:\checkmark \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *