Menu Close

if-q-is-prime-number-fixed-then-solve-for-natural-numbers-the-equation-1-q-1-x-1-y-1-z-




Question Number 149567 by mathdanisur last updated on 06/Aug/21
if  q  is prime number fixed, then  solve for natural numbers the equation:  (1/q) = (1/x) + (1/y) - (1/z)
ifqisprimenumberfixed,thensolvefornaturalnumberstheequation:1q=1x+1y1z
Commented by Rasheed.Sindhi last updated on 07/Aug/21
My answer is too lengthy.  The question is waiting for a better  solution.
Myansweristoolengthy.Thequestioniswaitingforabettersolution.
Commented by mathdanisur last updated on 07/Aug/21
Dear Ser  We hawe: (1/n) = (1/(2(n-1))) + (1/(2(n+1))) - (1/((n-1)(n+1)))  ⇒ n=q ....  Ser, this true or wrong.?
DearSerWehawe:1n=12(n1)+12(n+1)1(n1)(n+1)n=q.Ser,thistrueorwrong.?
Commented by Rasheed.Sindhi last updated on 07/Aug/21
(1/(2(q−1)))+(1/(2(q+1)))−(1/((q−1)(q+1)))     =((q+1+q−1−2)/(2(q−1)(q+1)))=((2q−2)/(2(q−1)(q+1)))  =((2(q−1))/(2(q−1)(q+1)))=(1/(q+1))≠(1/q)  Not correct ser.
12(q1)+12(q+1)1(q1)(q+1)=q+1+q122(q1)(q+1)=2q22(q1)(q+1)=2(q1)2(q1)(q+1)=1q+11qNotcorrectser.
Commented by mathdanisur last updated on 07/Aug/21
Sorry Ser,  ... (1/(n(n-1)(n+1)))
SorrySer,1n(n1)(n+1)
Commented by Rasheed.Sindhi last updated on 07/Aug/21
 (1/(2(n-1))) + (1/(2(n+1))) - (1/(n(n-1)(n+1)))  ((n(n+1)+n(n−1)−2)/(2n(n-1)(n+1)))  ((n^2 +n+n^2 −n−2)/(2n(n-1)(n+1)))=((2n^2 −2)/(2n(n-1)(n+1)))  ((2(n−1)(n+1))/(2n(n-1)(n+1)))=(1/n) ✓  It means that this is the solution.
12(n1)+12(n+1)1n(n1)(n+1)n(n+1)+n(n1)22n(n1)(n+1)n2+n+n2n22n(n1)(n+1)=2n222n(n1)(n+1)2(n1)(n+1)2n(n1)(n+1)=1nItmeansthatthisisthesolution.

Leave a Reply

Your email address will not be published. Required fields are marked *