Menu Close

If-R-1-j-L-R-3-R-2-R-4-j-1-C-where-R-1-R-2-R-3-R-4-L-and-C-are-real-show-that-L-C-R-2-R-3-2-C-2-R-4-2-1-




Question Number 51248 by Tawa1 last updated on 25/Dec/18
If     ((R_1  + jωL)/R_3 )  =  (R_2 /(R_4  − j (1/(ωC))))  ,   where  R_1 , R_2 , R_3 , R_4 , ω, L and C  are real ,  show that    L = ((C R_2 R_3 )/(ω^2 C^2 R_4 ^2  + 1))
$$\mathrm{If}\:\:\:\:\:\frac{\mathrm{R}_{\mathrm{1}} \:+\:\mathrm{j}\omega\mathrm{L}}{\mathrm{R}_{\mathrm{3}} }\:\:=\:\:\frac{\mathrm{R}_{\mathrm{2}} }{\mathrm{R}_{\mathrm{4}} \:−\:\mathrm{j}\:\frac{\mathrm{1}}{\omega\mathrm{C}}}\:\:,\:\:\:\mathrm{where}\:\:\mathrm{R}_{\mathrm{1}} ,\:\mathrm{R}_{\mathrm{2}} ,\:\mathrm{R}_{\mathrm{3}} ,\:\mathrm{R}_{\mathrm{4}} ,\:\omega,\:\mathrm{L}\:\mathrm{and}\:\mathrm{C} \\ $$$$\mathrm{are}\:\mathrm{real}\:,\:\:\mathrm{show}\:\mathrm{that}\:\:\:\:\mathrm{L}\:=\:\frac{\mathrm{C}\:\mathrm{R}_{\mathrm{2}} \mathrm{R}_{\mathrm{3}} }{\omega^{\mathrm{2}} \mathrm{C}^{\mathrm{2}} \mathrm{R}_{\mathrm{4}} ^{\mathrm{2}} \:+\:\mathrm{1}} \\ $$
Answered by tanmay.chaudhury50@gmail.com last updated on 25/Dec/18
(R_1 /R_3 )+j((wL)/R_3 )=(R_2 /(R_4 +(1/(w^2 C^2 ))))(R_4 +j(1/(wC)))  comparing real and imaginary part  ((wL)/R_3 )=(R_2 /(R_4 +(1/(w^2 C^2 ))))((1/(wC)))  L=(R_3 /w)×((R_2 /(wC))/((R_4 w^2 C^2 +1)/(w^2 C^2 )))  L=(R_3 /w)×((R_2 w^2 C^2 )/(wC(R_4 w^2 C^2 +1)))=((R_2 R_3 C)/(1+R_4 w^2 C^2 ))
$$\frac{{R}_{\mathrm{1}} }{{R}_{\mathrm{3}} }+{j}\frac{{wL}}{{R}_{\mathrm{3}} }=\frac{{R}_{\mathrm{2}} }{{R}_{\mathrm{4}} +\frac{\mathrm{1}}{{w}^{\mathrm{2}} {C}^{\mathrm{2}} }}\left({R}_{\mathrm{4}} +{j}\frac{\mathrm{1}}{{wC}}\right) \\ $$$${comparing}\:{real}\:{and}\:{imaginary}\:{part} \\ $$$$\frac{{wL}}{{R}_{\mathrm{3}} }=\frac{{R}_{\mathrm{2}} }{{R}_{\mathrm{4}} +\frac{\mathrm{1}}{{w}^{\mathrm{2}} {C}^{\mathrm{2}} }}\left(\frac{\mathrm{1}}{{wC}}\right) \\ $$$${L}=\frac{{R}_{\mathrm{3}} }{{w}}×\frac{\frac{{R}_{\mathrm{2}} }{{wC}}}{\frac{{R}_{\mathrm{4}} {w}^{\mathrm{2}} {C}^{\mathrm{2}} +\mathrm{1}}{{w}^{\mathrm{2}} {C}^{\mathrm{2}} }} \\ $$$${L}=\frac{{R}_{\mathrm{3}} }{{w}}×\frac{{R}_{\mathrm{2}} {w}^{\mathrm{2}} {C}^{\mathrm{2}} }{{wC}\left({R}_{\mathrm{4}} {w}^{\mathrm{2}} {C}^{\mathrm{2}} +\mathrm{1}\right)}=\frac{{R}_{\mathrm{2}} {R}_{\mathrm{3}} {C}}{\mathrm{1}+{R}_{\mathrm{4}} {w}^{\mathrm{2}} {C}^{\mathrm{2}} } \\ $$$$ \\ $$
Commented by Tawa1 last updated on 25/Dec/18
God bless you sir
$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir} \\ $$
Commented by tanmay.chaudhury50@gmail.com last updated on 26/Dec/18
thank you...
$${thank}\:{you}… \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *