Menu Close

If-r-1-n-t-r-n-n-1-n-2-n-3-8-then-lim-n-r-1-n-1-t-r-




Question Number 110173 by ajfour last updated on 27/Aug/20
If  Σ_(r=1) ^n t_r =((n(n+1)(n+2)(n+3))/8)  then    lim_(n→∞)   Σ_(r=1) ^n  (1/t_r ) = ?
Ifnr=1tr=n(n+1)(n+2)(n+3)8thenlimnnr=11tr=?
Answered by Olaf last updated on 27/Aug/20
t_n  = Σ_(r=1) ^n t_r −Σ_(r=1) ^(n−1) t_r   t_n  = ((n(n+1)(n+2)(n+3))/8)−(((n−1)n(n+1)(n+2))/8)  t_n  = ((n(n+1)(n+2)[n+3−n+1])/8)  t_n  = ((n(n+1)(n+2))/2)  t_r  = ((r(r+1)(r+2))/2)  (1/t_r ) = (2/(r(r+1)(r+2))) = (1/r)−(2/(r+1))+(1/(r+2))  Σ_(r=1) ^n (1/t_r ) = Σ_(r=1) ^n (1/r)−2Σ_(r=1) ^n (1/(r+1))+Σ_(r=1) ^n (1/(r+2))  Σ_(r=1) ^n (1/t_r ) = Σ_(r=1) ^n (1/r)−2Σ_(r=2) ^(n+1) (1/r)+Σ_(r=3) ^(n+2) (1/r)  Σ_(r=1) ^n (1/t_r ) = Σ_(r=1) ^n (1/r)−2(Σ_(r=1) ^n (1/r)−1+(1/(n+1)))  +(Σ_(r=1) ^n (1/r)−1−(1/2)+(1/(n+1))+(1/(n+2)))  Σ_(r=1) ^n (1/t_r ) = 2−(2/(n+1))−(3/2)+(1/(n+1))+(1/(n+2))  Σ_(r=1) ^n (1/t_r ) = (1/2)−(1/(n+1))+(1/(n+2))  Σ_(r=1) ^n (1/t_r ) = (1/2)−(1/((n+1)(n+2)))  lim_(n→∞) Σ_(r=1) ^n (1/t_r ) = (1/2)
tn=nr=1trn1r=1trtn=n(n+1)(n+2)(n+3)8(n1)n(n+1)(n+2)8tn=n(n+1)(n+2)[n+3n+1]8tn=n(n+1)(n+2)2tr=r(r+1)(r+2)21tr=2r(r+1)(r+2)=1r2r+1+1r+2nr=11tr=nr=11r2nr=11r+1+nr=11r+2nr=11tr=nr=11r2n+1r=21r+n+2r=31rnr=11tr=nr=11r2(nr=11r1+1n+1)+(nr=11r112+1n+1+1n+2)nr=11tr=22n+132+1n+1+1n+2nr=11tr=121n+1+1n+2nr=11tr=121(n+1)(n+2)limnnr=11tr=12
Commented by ajfour last updated on 27/Aug/20
right answer, thanks Sir.
rightanswer,thanksSir.
Answered by Dwaipayan Shikari last updated on 27/Aug/20
△Σ_(r=1) ^n t_r =((n(n+1)(n+2)(n+3))/8)−(((n−1)n(n+1)(n+2))/8)  t_n =((n(n+1)(n+2))/2)  Σ^∞ (1/t_n )=Σ^∞ (2/(n(n+1)(n+2)))=Σ^∞ ((n+2−n)/(n(n+1)(n+2)))=Σ^∞ (1/n)−(1/(n+1))−Σ^∞ (1/(n+1))−(1/(n+2))  =lim_(n→∞) (1−(1/(n+1)))−lim_(n→∞) ((1/2)−(1/(n+2)))  =1−(1/2)=(1/2)
nr=1tr=n(n+1)(n+2)(n+3)8(n1)n(n+1)(n+2)8tn=n(n+1)(n+2)21tn=2n(n+1)(n+2)=n+2nn(n+1)(n+2)=1n1n+11n+11n+2=limn(11n+1)limn(121n+2)=112=12
Commented by ajfour last updated on 27/Aug/20
Great way Sir; thanks a lot.
GreatwaySir;thanksalot.

Leave a Reply

Your email address will not be published. Required fields are marked *