Menu Close

If-r-is-a-unit-vector-then-show-that-r-dr-dt-dr-dt-




Question Number 25783 by lizan 123 last updated on 14/Dec/17
If   r  is  a  unit  vector then  show that              ∣r×(dr/dt)∣  =  ∣(dr/dt)∣
$${If}\:\:\:{r}\:\:{is}\:\:{a}\:\:{unit}\:\:{vector}\:{then}\:\:{show}\:{that}\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\mid{r}×\frac{{dr}}{{dt}}\mid\:\:=\:\:\mid\frac{{dr}}{{dt}}\mid \\ $$
Answered by ajfour last updated on 15/Dec/17
r^� =cos θi^� +sin θj^�   (dr^� /dt)=((dθ/dt))(−sin θi^� +cos θj^� )  ⇒ ∣(dr^� /dt)∣=absolute value of ( (dθ/dt))                                       .....(a)   while r^� ×(dr^� /dt)=(cos θi^� +sin θj^� )×                         ((dθ/dt))(−sin θi^� +cos θj^� )      =((dθ/dt))(cos^2 θ+sin^2 θ)k^�      =((dθ/dt))k^�   ⇒  ∣r^� ×(dr^� /dt)∣=absolute value of ((dθ/dt))                   = ∣(dr^� /dt)∣      [see (a) ].
$$\bar {{r}}=\mathrm{cos}\:\theta\hat {{i}}+\mathrm{sin}\:\theta\hat {{j}} \\ $$$$\frac{{d}\bar {{r}}}{{dt}}=\left(\frac{{d}\theta}{{dt}}\right)\left(−\mathrm{sin}\:\theta\hat {{i}}+\mathrm{cos}\:\theta\hat {{j}}\right) \\ $$$$\Rightarrow\:\mid\frac{{d}\bar {{r}}}{{dt}}\mid={absolute}\:{value}\:{of}\:\left(\:\frac{{d}\theta}{{dt}}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:…..\left(\boldsymbol{{a}}\right)\: \\ $$$${while}\:\bar {{r}}×\frac{{d}\bar {{r}}}{{dt}}=\left(\mathrm{cos}\:\theta\hat {{i}}+\mathrm{sin}\:\theta\hat {{j}}\right)× \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left(\frac{{d}\theta}{{dt}}\right)\left(−\mathrm{sin}\:\theta\hat {{i}}+\mathrm{cos}\:\theta\hat {{j}}\right) \\ $$$$\:\:\:\:=\left(\frac{{d}\theta}{{dt}}\right)\left(\mathrm{cos}\:^{\mathrm{2}} \theta+\mathrm{sin}\:^{\mathrm{2}} \theta\right)\hat {{k}} \\ $$$$\:\:\:=\left(\frac{{d}\theta}{{dt}}\right)\hat {{k}} \\ $$$$\Rightarrow\:\:\mid\bar {{r}}×\frac{{d}\bar {{r}}}{{dt}}\mid={absolute}\:{value}\:{of}\:\left(\frac{{d}\theta}{{dt}}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\:\mid\frac{{d}\bar {{r}}}{{dt}}\mid\:\:\:\:\:\:\left[{see}\:\left(\boldsymbol{{a}}\right)\:\right]. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *