Menu Close

If-r-is-a-unit-vector-then-show-that-r-dr-dt-dr-dt-




Question Number 25783 by lizan 123 last updated on 14/Dec/17
If   r  is  a  unit  vector then  show that              ∣r×(dr/dt)∣  =  ∣(dr/dt)∣
Ifrisaunitvectorthenshowthatr×drdt=drdt
Answered by ajfour last updated on 15/Dec/17
r^� =cos θi^� +sin θj^�   (dr^� /dt)=((dθ/dt))(−sin θi^� +cos θj^� )  ⇒ ∣(dr^� /dt)∣=absolute value of ( (dθ/dt))                                       .....(a)   while r^� ×(dr^� /dt)=(cos θi^� +sin θj^� )×                         ((dθ/dt))(−sin θi^� +cos θj^� )      =((dθ/dt))(cos^2 θ+sin^2 θ)k^�      =((dθ/dt))k^�   ⇒  ∣r^� ×(dr^� /dt)∣=absolute value of ((dθ/dt))                   = ∣(dr^� /dt)∣      [see (a) ].
r¯=cosθi^+sinθj^dr¯dt=(dθdt)(sinθi^+cosθj^)dr¯dt∣=absolutevalueof(dθdt)..(a)whiler¯×dr¯dt=(cosθi^+sinθj^)×(dθdt)(sinθi^+cosθj^)=(dθdt)(cos2θ+sin2θ)k^=(dθdt)k^r¯×dr¯dt∣=absolutevalueof(dθdt)=dr¯dt[see(a)].

Leave a Reply

Your email address will not be published. Required fields are marked *