Menu Close

If-Re-z-4-2z-1-1-2-then-z-is-represented-by-a-point-lying-on-1-A-circle-2-An-ellipse-3-A-straight-line-4-No-real-locus-




Question Number 20800 by Tinkutara last updated on 03/Sep/17
If Re(((z + 4)/(2z − 1))) = (1/2), then z is represented  by a point lying on  (1) A circle  (2) An ellipse  (3) A straight line  (4) No real locus
$$\mathrm{If}\:\mathrm{Re}\left(\frac{{z}\:+\:\mathrm{4}}{\mathrm{2}{z}\:−\:\mathrm{1}}\right)\:=\:\frac{\mathrm{1}}{\mathrm{2}},\:\mathrm{then}\:{z}\:\mathrm{is}\:\mathrm{represented} \\ $$$$\mathrm{by}\:\mathrm{a}\:\mathrm{point}\:\mathrm{lying}\:\mathrm{on} \\ $$$$\left(\mathrm{1}\right)\:\mathrm{A}\:\mathrm{circle} \\ $$$$\left(\mathrm{2}\right)\:\mathrm{An}\:\mathrm{ellipse} \\ $$$$\left(\mathrm{3}\right)\:\mathrm{A}\:\mathrm{straight}\:\mathrm{line} \\ $$$$\left(\mathrm{4}\right)\:\mathrm{No}\:\mathrm{real}\:\mathrm{locus} \\ $$
Commented by ajfour last updated on 03/Sep/17
Re(z)=(1/2) .  ⇒ straight line.
$${Re}\left({z}\right)=\frac{\mathrm{1}}{\mathrm{2}}\:. \\ $$$$\Rightarrow\:{straight}\:{line}. \\ $$
Answered by ajfour last updated on 03/Sep/17
⇒       ((x+4+iy)/(2x−1+i2y))=(1/2)+iq  ⇒ (((x+4+iy)(2x−1−i2y))/((2x−1)^2 +4y^2 ))=(1/2)+iq  ⇒  (((x+4)(2x−1)+2y^2 )/((2x−1)^2 +4y^2 )) =(1/2)  or    ((2(x+4)(2x−1)+4y^2 )/((2x−1)^2 +4y^2 )) = 1  ⇒    2x−1=0   or  2(x+4)=2x−1  from first   x= Re(z)=(1/2)  from second  2x+8=2x−1                    no solution.       so  Re(z)=(1/2)     Im(z)≠0 .  straight line with one point  (z=1/2+0i)   removed.
$$\Rightarrow\:\:\:\:\:\:\:\frac{{x}+\mathrm{4}+{iy}}{\mathrm{2}{x}−\mathrm{1}+{i}\mathrm{2}{y}}=\frac{\mathrm{1}}{\mathrm{2}}+{iq} \\ $$$$\Rightarrow\:\frac{\left({x}+\mathrm{4}+{iy}\right)\left(\mathrm{2}{x}−\mathrm{1}−{i}\mathrm{2}{y}\right)}{\left(\mathrm{2}{x}−\mathrm{1}\right)^{\mathrm{2}} +\mathrm{4}{y}^{\mathrm{2}} }=\frac{\mathrm{1}}{\mathrm{2}}+{iq} \\ $$$$\Rightarrow\:\:\frac{\left({x}+\mathrm{4}\right)\left(\mathrm{2}{x}−\mathrm{1}\right)+\mathrm{2}{y}^{\mathrm{2}} }{\left(\mathrm{2}{x}−\mathrm{1}\right)^{\mathrm{2}} +\mathrm{4}{y}^{\mathrm{2}} }\:=\frac{\mathrm{1}}{\mathrm{2}} \\ $$$${or}\:\:\:\:\frac{\mathrm{2}\left({x}+\mathrm{4}\right)\left(\mathrm{2}{x}−\mathrm{1}\right)+\mathrm{4}{y}^{\mathrm{2}} }{\left(\mathrm{2}{x}−\mathrm{1}\right)^{\mathrm{2}} +\mathrm{4}{y}^{\mathrm{2}} }\:=\:\mathrm{1} \\ $$$$\Rightarrow\:\:\:\:\mathrm{2}{x}−\mathrm{1}=\mathrm{0}\:\:\:{or}\:\:\mathrm{2}\left({x}+\mathrm{4}\right)=\mathrm{2}{x}−\mathrm{1} \\ $$$${from}\:{first}\:\:\:\boldsymbol{{x}}=\:\boldsymbol{{Re}}\left(\boldsymbol{{z}}\right)=\frac{\mathrm{1}}{\mathrm{2}} \\ $$$${from}\:{second}\:\:\mathrm{2}{x}+\mathrm{8}=\mathrm{2}{x}−\mathrm{1} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{no}\:{solution}. \\ $$$$\:\:\:\:\:{so}\:\:{Re}\left({z}\right)=\frac{\mathrm{1}}{\mathrm{2}}\:\:\:\:\:{Im}\left({z}\right)\neq\mathrm{0}\:. \\ $$$${straight}\:{line}\:{with}\:{one}\:{point} \\ $$$$\left({z}=\mathrm{1}/\mathrm{2}+\mathrm{0}{i}\right)\:\:\:{removed}. \\ $$
Commented by ajfour last updated on 03/Sep/17
do you have a solution?
$${do}\:{you}\:{have}\:{a}\:{solution}? \\ $$
Commented by Tinkutara last updated on 03/Sep/17
Thank you very much Sir!
$$\mathrm{Thank}\:\mathrm{you}\:\mathrm{very}\:\mathrm{much}\:\mathrm{Sir}! \\ $$
Answered by Tinkutara last updated on 03/Sep/17
Commented by Tinkutara last updated on 03/Sep/17
This is in book.
$$\mathrm{This}\:\mathrm{is}\:\mathrm{in}\:\mathrm{book}. \\ $$
Commented by ajfour last updated on 03/Sep/17
thanks for posting.
$${thanks}\:{for}\:{posting}. \\ $$
Commented by Tinkutara last updated on 03/Sep/17

Leave a Reply

Your email address will not be published. Required fields are marked *