Menu Close

If-S-n-is-the-sum-of-the-first-n-terms-of-an-A-P-Express-S-2k-in-terms-of-S-k-and-S-3k-




Question Number 101779 by I want to learn more last updated on 04/Jul/20
If    S_n   is the sum of the first  n  terms of an A.P.  Express   S_(2k)   in terms of   S_k   and   S_(3k)
IfSnisthesumofthefirstntermsofanA.P.ExpressS2kintermsofSkandS3k
Answered by bemath last updated on 04/Jul/20
S_n  = ((n(a+u_n ))/2)→ S_(k ) = ((k(a+u_k ))/2)  u_k = ((2S_k )/k)−a ⇒a+(k−1)d=((2S_k )/k)−a  (k−1)d = ((2S_k )/k)−2a⇒d =((2S_k −2ak)/(k(k−1))) (•)  S_(2k)  = ((2k(a+u_(2k) ))/2) = k(a+u_(2k) )  u_(2k)  = (S_(2k) /k)−a ⇔a+(2k−1)d=(S_(2k) /k)−a   d = ((S_(2k) −ak)/(k(2k−1))) (••)  (•)=(••)  ((2S_k −2ak)/(k(k−1))) = ((S_(2k) −ak)/(k(2k−1)))  ⇒(((2k−1)(2S_k −2ak))/(k−1)) +ak = S_(2k)
Sn=n(a+un)2Sk=k(a+uk)2uk=2Skkaa+(k1)d=2Skka(k1)d=2Skk2ad=2Sk2akk(k1)()S2k=2k(a+u2k)2=k(a+u2k)u2k=S2kkaa+(2k1)d=S2kkad=S2kakk(2k1)()()=()2Sk2akk(k1)=S2kakk(2k1)(2k1)(2Sk2ak)k1+ak=S2k
Commented by I want to learn more last updated on 05/Jul/20
Thanks sir. I appreciate
Thankssir.Iappreciate

Leave a Reply

Your email address will not be published. Required fields are marked *