Question Number 154495 by mathdanisur last updated on 18/Sep/21
$$\mathrm{if}\:\:\mathrm{S}_{\boldsymbol{\mathrm{n}}} \left(\mathrm{t}\right)\:=\:\mathrm{n}^{\mathrm{1}-\boldsymbol{\mathrm{t}}} \:\left(\frac{\left(\mathrm{n}+\mathrm{1}\right)^{\mathrm{2}\boldsymbol{\mathrm{t}}} }{\left(\sqrt[{\boldsymbol{\mathrm{n}}+\mathrm{1}}]{\left(\mathrm{n}+\mathrm{1}\right)!}\right)^{\boldsymbol{\mathrm{t}}} }\:-\:\frac{\mathrm{n}^{\mathrm{2}\boldsymbol{\mathrm{t}}} }{\left(\sqrt[{\boldsymbol{\mathrm{n}}}]{\mathrm{n}!}\right)^{\boldsymbol{\mathrm{t}}} }\right) \\ $$$$\mathrm{with}\:\:\mathrm{t}>\mathrm{0} \\ $$$$\mathrm{then}\:\:\underset{\boldsymbol{\mathrm{n}}\rightarrow\infty} {\mathrm{lim}S}_{\boldsymbol{\mathrm{n}}} \left(\mathrm{t}\right)\:=\:\mathrm{te}^{\boldsymbol{\mathrm{t}}} \\ $$
Answered by Ar Brandon last updated on 18/Sep/21
$$\mathrm{S}_{\boldsymbol{\mathrm{n}}} \left(\mathrm{t}\right)\:=\:\mathrm{n}^{\mathrm{1}-\boldsymbol{\mathrm{t}}} \:\left(\frac{\left(\mathrm{n}+\mathrm{1}\right)^{\mathrm{2}\boldsymbol{\mathrm{t}}} }{\left(\sqrt[{\boldsymbol{\mathrm{n}}+\mathrm{1}}]{\left(\mathrm{n}+\mathrm{1}\right)!}\right)^{\boldsymbol{\mathrm{t}}} }\:-\:\frac{\mathrm{n}^{\mathrm{2}\boldsymbol{\mathrm{t}}} }{\left(\sqrt[{\boldsymbol{\mathrm{n}}}]{\mathrm{n}!}\right)^{\boldsymbol{\mathrm{t}}} }\right) \\ $$$${S}_{{n}} \left({t}\right)={n}^{\mathrm{1}−{t}} \left(\frac{\left({n}+\mathrm{1}\right)^{\mathrm{2}{t}} }{\left(\sqrt[{{n}+\mathrm{1}}]{\sqrt{\mathrm{2}\pi\left({n}+\mathrm{1}\right)\left(\frac{{n}+\mathrm{1}}{{e}}\right)^{{n}+\mathrm{1}} }}\right)^{{t}} }−\frac{{n}^{\mathrm{2}{t}} }{\left(\sqrt[{{n}}]{\sqrt{\mathrm{2}\pi{n}\left(\frac{{n}}{{e}}\right)^{{n}} }}\right)^{{t}} }\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:=\frac{\mathrm{1}}{{n}^{{t}−\mathrm{1}} }\left(\frac{\left({n}+\mathrm{1}\right)^{\mathrm{2}{t}} }{\left(\mathrm{2}\pi{e}^{−\mathrm{1}} \left({n}+\mathrm{1}\right)^{{n}+\mathrm{2}} \right)^{\frac{{t}}{\mathrm{2}\left({n}+\mathrm{1}\right)}} }−\frac{{n}^{\mathrm{2}{t}} }{\left(\mathrm{2}\pi{e}^{−\mathrm{1}} {n}^{{n}+\mathrm{1}} \right)^{\frac{{t}}{\mathrm{2}{n}}} }\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\frac{\mathrm{1}}{{n}^{{t}−\mathrm{1}} }\left(\frac{\left({n}+\mathrm{1}\right)^{\mathrm{2}{t}−\frac{{t}\left({n}+\mathrm{2}\right)}{\mathrm{2}\left({n}+\mathrm{1}\right)}} }{\left(\mathrm{2}\pi{e}^{−\mathrm{1}} \right)^{\frac{{t}}{\mathrm{2}\left({n}+\mathrm{1}\right)}} }−\frac{{n}^{\mathrm{2}{t}−\frac{{t}\left({n}+\mathrm{1}\right)}{\mathrm{2}{n}}} }{\left(\mathrm{2}\pi{e}^{−\mathrm{1}} \right)^{\frac{{t}}{\mathrm{2}{n}}} }\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\frac{\mathrm{1}}{{n}^{{t}−\mathrm{1}} }\left(\frac{\left({n}+\mathrm{1}\right)^{\frac{\mathrm{3}{tn}+\mathrm{2}{t}}{\mathrm{2}\left({n}+\mathrm{1}\right)}} }{\left(\mathrm{2}\pi{e}^{−\mathrm{1}} \right)^{\frac{{t}}{\mathrm{2}\left({n}+\mathrm{1}\right)}} }−\frac{{n}^{\frac{\mathrm{3}{tn}−{t}}{\mathrm{2}{n}}} }{\left(\mathrm{2}\pi{e}^{−\mathrm{1}} \right)^{\frac{{t}}{\mathrm{2}{n}}} }\right) \\ $$
Commented by mathdanisur last updated on 19/Sep/21
$$\mathrm{Thank}\:\mathrm{You}\:\boldsymbol{\mathrm{S}}\mathrm{er},\:\mathrm{answer}\:=\:\mathrm{1} \\ $$