Menu Close

if-S-n-t-n-1-t-n-1-2t-n-1-1-n-1-t-n-2t-n-1-n-t-with-t-gt-0-then-lim-n-S-n-t-te-t-




Question Number 154495 by mathdanisur last updated on 18/Sep/21
if  S_n (t) = n^(1-t)  ((((n+1)^(2t) )/(((((n+1)!))^(1/(n+1)) )^t )) - (n^(2t) /((((n!))^(1/n) )^t )))  with  t>0  then  lim_(n→∞) S_n (t) = te^t
ifSn(t)=n1t((n+1)2t((n+1)!n+1)tn2t(n!n)t)witht>0Double subscripts: use braces to clarify
Answered by Ar Brandon last updated on 18/Sep/21
S_n (t) = n^(1-t)  ((((n+1)^(2t) )/(((((n+1)!))^(1/(n+1)) )^t )) - (n^(2t) /((((n!))^(1/n) )^t )))  S_n (t)=n^(1−t) ((((n+1)^(2t) )/((((√(2π(n+1)(((n+1)/e))^(n+1) )))^(1/(n+1)) )^t ))−(n^(2t) /((((√(2πn((n/e))^n )))^(1/n) )^t )))               =(1/n^(t−1) )((((n+1)^(2t) )/((2πe^(−1) (n+1)^(n+2) )^(t/(2(n+1))) ))−(n^(2t) /((2πe^(−1) n^(n+1) )^(t/(2n)) )))                =(1/n^(t−1) )((((n+1)^(2t−((t(n+2))/(2(n+1)))) )/((2πe^(−1) )^(t/(2(n+1))) ))−(n^(2t−((t(n+1))/(2n))) /((2πe^(−1) )^(t/(2n)) )))                 =(1/n^(t−1) )((((n+1)^((3tn+2t)/(2(n+1))) )/((2πe^(−1) )^(t/(2(n+1))) ))−(n^((3tn−t)/(2n)) /((2πe^(−1) )^(t/(2n)) )))
Sn(t)=n1t((n+1)2t((n+1)!n+1)tn2t(n!n)t)Sn(t)=n1t((n+1)2t(2π(n+1)(n+1e)n+1n+1)tn2t(2πn(ne)nn)t)=1nt1((n+1)2t(2πe1(n+1)n+2)t2(n+1)n2t(2πe1nn+1)t2n)=1nt1((n+1)2tt(n+2)2(n+1)(2πe1)t2(n+1)n2tt(n+1)2n(2πe1)t2n)=1nt1((n+1)3tn+2t2(n+1)(2πe1)t2(n+1)n3tnt2n(2πe1)t2n)
Commented by mathdanisur last updated on 19/Sep/21
Thank You Ser, answer = 1
ThankYouSer,answer=1

Leave a Reply

Your email address will not be published. Required fields are marked *