Menu Close

If-sec-x-tan-x-2-5-find-sin-x-cos-x-




Question Number 82654 by jagoll last updated on 23/Feb/20
If sec x + tan x = 2+(√5)  find sin x+ cos x ?
Ifsecx+tanx=2+5findsinx+cosx?
Commented by jagoll last updated on 23/Feb/20
Answered by mr W last updated on 23/Feb/20
((1+sin x)/(cos x))=2+(√5)  cos x≠0 ⇒x≠2kπ±(π/2)  (2+(√5))cos x−sin x=1  ((2+(√5))/( (√(1^2 +(2+(√5))^2 )))) cos x−(1/( (√(1^2 +(2+(√5))^2 )))) sin x=(1/( (√(1^2 +(2+(√5))^2 ))))  cos α cos x−sin α sin x=sin α  cos (x+α)=sin α=cos ((π/2)−α)  ⇒x+α=2kπ±((π/2)−α)  ⇒x=2kπ±((π/2)−α)−α= { ((2kπ+(π/2)−2α)),((2kπ−(π/2) ⇒not suitable)) :}  ⇒x=2kπ+(π/2)−2α  cos x+sin x=sin 2α+cos 2α  =((2(2+(√5)))/(10+4(√5)))+(((2+(√5))^2 −1)/(10+4(√5)))  =((3(2+(√5)))/(5+2(√5)))  =((3(2+(√5)))/( (√5)(2+(√5))))  =((3(√5))/5)
1+sinxcosx=2+5cosx0x2kπ±π2(2+5)cosxsinx=12+512+(2+5)2cosx112+(2+5)2sinx=112+(2+5)2cosαcosxsinαsinx=sinαcos(x+α)=sinα=cos(π2α)x+α=2kπ±(π2α)x=2kπ±(π2α)α={2kπ+π22α2kππ2notsuitablex=2kπ+π22αcosx+sinx=sin2α+cos2α=2(2+5)10+45+(2+5)2110+45=3(2+5)5+25=3(2+5)5(2+5)=355
Commented by jagoll last updated on 23/Feb/20
thank you sir
thankyousir
Commented by mr W last updated on 23/Feb/20
if possible one should always try   without squaring to avoid that “fake”  roots are added. with x=2kπ+(π/2)−2α  i′m sure all true roots are included and  no fake root is included.
ifpossibleoneshouldalwaystrywithoutsquaringtoavoidthatfakerootsareadded.withx=2kπ+π22αimsurealltruerootsareincludedandnofakerootisincluded.
Answered by TANMAY PANACEA last updated on 23/Feb/20
(secx+tanx)(secx−tanx)=1  secx−tanx=(1/( (√5) +2))=(√5) −2  (secx+tanx)+(secx−tanx)=2(√5)   secx=(√5) →cosx=(1/( (√5)))  sinx=(2/( (√5)))→sinx+cosx=(3/( (√5)))=((3(√5))/5)
(secx+tanx)(secxtanx)=1secxtanx=15+2=52(secx+tanx)+(secxtanx)=25secx=5cosx=15sinx=25sinx+cosx=35=355
Commented by mr W last updated on 23/Feb/20
nice solution!
nicesolution!
Commented by TANMAY PANACEA last updated on 23/Feb/20
thank you sir
thankyousir
Answered by john santu last updated on 23/Feb/20
let : sec x − tan x = t   (sec x+tan x)(sec x−tan x) = (2+(√5) )t  sec^2 x−tan^2 x = (2+(√5))t  tan^2 x+1−tan^2 x= (2+(√5)) t  t = (1/(2+(√5)))= (√5) −2= (1/(cos x))−((sin x)/(cos x)) (1)  from (1/(cos x))+((sin x)/(cos x)) = 2+(√5) (2)  (1)+(2) ⇒ (2/(cos x)) = 2(√5) ⇒ cos x = (1/( (√5)))  then sin x = (2/( (√5))) ⇒ sin x+cos x = (3/( (√5)))
let:secxtanx=t(secx+tanx)(secxtanx)=(2+5)tsec2xtan2x=(2+5)ttan2x+1tan2x=(2+5)tt=12+5=52=1cosxsinxcosx(1)from1cosx+sinxcosx=2+5(2)(1)+(2)2cosx=25cosx=15thensinx=25sinx+cosx=35
Commented by peter frank last updated on 23/Feb/20
thank you both
thankyouboth

Leave a Reply

Your email address will not be published. Required fields are marked *