Question Number 82654 by jagoll last updated on 23/Feb/20
$$\boldsymbol{\mathrm{I}}\mathrm{f}\:\mathrm{sec}\:\mathrm{x}\:+\:\mathrm{tan}\:\mathrm{x}\:=\:\mathrm{2}+\sqrt{\mathrm{5}} \\ $$$$\mathrm{find}\:\mathrm{sin}\:\mathrm{x}+\:\mathrm{cos}\:\mathrm{x}\:? \\ $$
Commented by jagoll last updated on 23/Feb/20
Answered by mr W last updated on 23/Feb/20
$$\frac{\mathrm{1}+\mathrm{sin}\:{x}}{\mathrm{cos}\:{x}}=\mathrm{2}+\sqrt{\mathrm{5}} \\ $$$$\mathrm{cos}\:{x}\neq\mathrm{0}\:\Rightarrow{x}\neq\mathrm{2}{k}\pi\pm\frac{\pi}{\mathrm{2}} \\ $$$$\left(\mathrm{2}+\sqrt{\mathrm{5}}\right)\mathrm{cos}\:{x}−\mathrm{sin}\:{x}=\mathrm{1} \\ $$$$\frac{\mathrm{2}+\sqrt{\mathrm{5}}}{\:\sqrt{\mathrm{1}^{\mathrm{2}} +\left(\mathrm{2}+\sqrt{\mathrm{5}}\right)^{\mathrm{2}} }}\:\mathrm{cos}\:{x}−\frac{\mathrm{1}}{\:\sqrt{\mathrm{1}^{\mathrm{2}} +\left(\mathrm{2}+\sqrt{\mathrm{5}}\right)^{\mathrm{2}} }}\:\mathrm{sin}\:{x}=\frac{\mathrm{1}}{\:\sqrt{\mathrm{1}^{\mathrm{2}} +\left(\mathrm{2}+\sqrt{\mathrm{5}}\right)^{\mathrm{2}} }} \\ $$$$\mathrm{cos}\:\alpha\:\mathrm{cos}\:{x}−\mathrm{sin}\:\alpha\:\mathrm{sin}\:{x}=\mathrm{sin}\:\alpha \\ $$$$\mathrm{cos}\:\left({x}+\alpha\right)=\mathrm{sin}\:\alpha=\mathrm{cos}\:\left(\frac{\pi}{\mathrm{2}}−\alpha\right) \\ $$$$\Rightarrow{x}+\alpha=\mathrm{2}{k}\pi\pm\left(\frac{\pi}{\mathrm{2}}−\alpha\right) \\ $$$$\Rightarrow{x}=\mathrm{2}{k}\pi\pm\left(\frac{\pi}{\mathrm{2}}−\alpha\right)−\alpha=\begin{cases}{\mathrm{2}{k}\pi+\frac{\pi}{\mathrm{2}}−\mathrm{2}\alpha}\\{\mathrm{2}{k}\pi−\frac{\pi}{\mathrm{2}}\:\Rightarrow{not}\:{suitable}}\end{cases} \\ $$$$\Rightarrow{x}=\mathrm{2}{k}\pi+\frac{\pi}{\mathrm{2}}−\mathrm{2}\alpha \\ $$$$\mathrm{cos}\:{x}+\mathrm{sin}\:{x}=\mathrm{sin}\:\mathrm{2}\alpha+\mathrm{cos}\:\mathrm{2}\alpha \\ $$$$=\frac{\mathrm{2}\left(\mathrm{2}+\sqrt{\mathrm{5}}\right)}{\mathrm{10}+\mathrm{4}\sqrt{\mathrm{5}}}+\frac{\left(\mathrm{2}+\sqrt{\mathrm{5}}\right)^{\mathrm{2}} −\mathrm{1}}{\mathrm{10}+\mathrm{4}\sqrt{\mathrm{5}}} \\ $$$$=\frac{\mathrm{3}\left(\mathrm{2}+\sqrt{\mathrm{5}}\right)}{\mathrm{5}+\mathrm{2}\sqrt{\mathrm{5}}} \\ $$$$=\frac{\mathrm{3}\left(\mathrm{2}+\sqrt{\mathrm{5}}\right)}{\:\sqrt{\mathrm{5}}\left(\mathrm{2}+\sqrt{\mathrm{5}}\right)} \\ $$$$=\frac{\mathrm{3}\sqrt{\mathrm{5}}}{\mathrm{5}} \\ $$
Commented by jagoll last updated on 23/Feb/20
$${thank}\:{you}\:{sir} \\ $$
Commented by mr W last updated on 23/Feb/20
$${if}\:{possible}\:{one}\:{should}\:{always}\:{try}\: \\ $$$${without}\:{squaring}\:{to}\:{avoid}\:{that}\:“{fake}'' \\ $$$${roots}\:{are}\:{added}.\:{with}\:{x}=\mathrm{2}{k}\pi+\frac{\pi}{\mathrm{2}}−\mathrm{2}\alpha \\ $$$${i}'{m}\:{sure}\:{all}\:{true}\:{roots}\:{are}\:{included}\:{and} \\ $$$${no}\:{fake}\:{root}\:{is}\:{included}.\: \\ $$
Answered by TANMAY PANACEA last updated on 23/Feb/20
$$\left({secx}+{tanx}\right)\left({secx}−{tanx}\right)=\mathrm{1} \\ $$$${secx}−{tanx}=\frac{\mathrm{1}}{\:\sqrt{\mathrm{5}}\:+\mathrm{2}}=\sqrt{\mathrm{5}}\:−\mathrm{2} \\ $$$$\left({secx}+{tanx}\right)+\left({secx}−{tanx}\right)=\mathrm{2}\sqrt{\mathrm{5}}\: \\ $$$${secx}=\sqrt{\mathrm{5}}\:\rightarrow{cosx}=\frac{\mathrm{1}}{\:\sqrt{\mathrm{5}}} \\ $$$${sinx}=\frac{\mathrm{2}}{\:\sqrt{\mathrm{5}}}\rightarrow{sinx}+{cosx}=\frac{\mathrm{3}}{\:\sqrt{\mathrm{5}}}=\frac{\mathrm{3}\sqrt{\mathrm{5}}}{\mathrm{5}} \\ $$
Commented by mr W last updated on 23/Feb/20
$${nice}\:{solution}! \\ $$
Commented by TANMAY PANACEA last updated on 23/Feb/20
$${thank}\:{you}\:{sir} \\ $$
Answered by john santu last updated on 23/Feb/20
$${let}\::\:\mathrm{sec}\:{x}\:−\:\mathrm{tan}\:{x}\:=\:{t}\: \\ $$$$\left(\mathrm{sec}\:{x}+\mathrm{tan}\:{x}\right)\left(\mathrm{sec}\:{x}−\mathrm{tan}\:{x}\right)\:=\:\left(\mathrm{2}+\sqrt{\mathrm{5}}\:\right){t} \\ $$$$\mathrm{sec}\:^{\mathrm{2}} {x}−\mathrm{tan}\:^{\mathrm{2}} {x}\:=\:\left(\mathrm{2}+\sqrt{\mathrm{5}}\right){t} \\ $$$$\mathrm{tan}\:^{\mathrm{2}} {x}+\mathrm{1}−\mathrm{tan}\:^{\mathrm{2}} {x}=\:\left(\mathrm{2}+\sqrt{\mathrm{5}}\right)\:{t} \\ $$$${t}\:=\:\frac{\mathrm{1}}{\mathrm{2}+\sqrt{\mathrm{5}}}=\:\sqrt{\mathrm{5}}\:−\mathrm{2}=\:\frac{\mathrm{1}}{\mathrm{cos}\:{x}}−\frac{\mathrm{sin}\:{x}}{\mathrm{cos}\:{x}}\:\left(\mathrm{1}\right) \\ $$$${from}\:\frac{\mathrm{1}}{\mathrm{cos}\:{x}}+\frac{\mathrm{sin}\:{x}}{\mathrm{cos}\:{x}}\:=\:\mathrm{2}+\sqrt{\mathrm{5}}\:\left(\mathrm{2}\right) \\ $$$$\left(\mathrm{1}\right)+\left(\mathrm{2}\right)\:\Rightarrow\:\frac{\mathrm{2}}{\mathrm{cos}\:{x}}\:=\:\mathrm{2}\sqrt{\mathrm{5}}\:\Rightarrow\:\mathrm{cos}\:{x}\:=\:\frac{\mathrm{1}}{\:\sqrt{\mathrm{5}}} \\ $$$${then}\:\mathrm{sin}\:{x}\:=\:\frac{\mathrm{2}}{\:\sqrt{\mathrm{5}}}\:\Rightarrow\:\mathrm{sin}\:{x}+\mathrm{cos}\:{x}\:=\:\frac{\mathrm{3}}{\:\sqrt{\mathrm{5}}} \\ $$
Commented by peter frank last updated on 23/Feb/20
$${thank}\:{you}\:{both} \\ $$