Menu Close

If-sec-x-tan-x-2012-then-2011-cosec-x-cot-x-is-equal-to-A-2011-B-2012-C-2013-D-2011-2013-E-2013-2012-




Question Number 21622 by Joel577 last updated on 29/Sep/17
If sec x + tan x = 2012  then 2011(cosec x + cot x) is equal to  (A) 2011  (B) 2012  (C) 2013  (D) ((2011)/(2013))  (E) ((2013)/(2012))
$$\mathrm{If}\:\mathrm{sec}\:{x}\:+\:\mathrm{tan}\:{x}\:=\:\mathrm{2012} \\ $$$$\mathrm{then}\:\mathrm{2011}\left(\mathrm{cosec}\:{x}\:+\:\mathrm{cot}\:{x}\right)\:\mathrm{is}\:\mathrm{equal}\:\mathrm{to} \\ $$$$\left({A}\right)\:\mathrm{2011} \\ $$$$\left({B}\right)\:\mathrm{2012} \\ $$$$\left({C}\right)\:\mathrm{2013} \\ $$$$\left({D}\right)\:\frac{\mathrm{2011}}{\mathrm{2013}} \\ $$$$\left({E}\right)\:\frac{\mathrm{2013}}{\mathrm{2012}} \\ $$
Answered by abwayh last updated on 29/Sep/17
it just try;  sec x+tan x=2012  (sec x−1)+tan x=2011  ;  sec x+tan x+1=2013  2tan x=2011 ......(i)  ;  2sec x=2013 .....(ii)  2011(cosec x+cot x)=  =2tan x((1/(sin x)) +((cos x)/(sin x)) )  =2((1/(cos x)) +1)  =2sec x+2  =2013+2  =2015
$$\mathrm{it}\:\mathrm{just}\:\mathrm{try}; \\ $$$$\mathrm{sec}\:\mathrm{x}+\mathrm{tan}\:\mathrm{x}=\mathrm{2012} \\ $$$$\left(\mathrm{sec}\:\mathrm{x}−\mathrm{1}\right)+\mathrm{tan}\:\mathrm{x}=\mathrm{2011}\:\:;\:\:\mathrm{sec}\:\mathrm{x}+\mathrm{tan}\:\mathrm{x}+\mathrm{1}=\mathrm{2013} \\ $$$$\mathrm{2tan}\:\mathrm{x}=\mathrm{2011}\:……\left(\mathrm{i}\right)\:\:;\:\:\mathrm{2sec}\:\mathrm{x}=\mathrm{2013}\:…..\left(\mathrm{ii}\right) \\ $$$$\mathrm{2011}\left(\mathrm{cosec}\:\mathrm{x}+\mathrm{cot}\:\mathrm{x}\right)= \\ $$$$=\mathrm{2tan}\:\mathrm{x}\left(\frac{\mathrm{1}}{\mathrm{sin}\:\mathrm{x}}\:+\frac{\mathrm{cos}\:\mathrm{x}}{\mathrm{sin}\:\mathrm{x}}\:\right) \\ $$$$=\mathrm{2}\left(\frac{\mathrm{1}}{\mathrm{cos}\:\mathrm{x}}\:+\mathrm{1}\right) \\ $$$$=\mathrm{2sec}\:\mathrm{x}+\mathrm{2} \\ $$$$=\mathrm{2013}+\mathrm{2} \\ $$$$=\mathrm{2015} \\ $$$$ \\ $$
Commented by $@ty@m last updated on 29/Sep/17
If u wont explain this I would  never understand how (i)  & (ii) are formed.
$${If}\:{u}\:{wont}\:{explain}\:{this}\:{I}\:{would} \\ $$$${never}\:{understand}\:{how}\:\left({i}\right) \\ $$$$\&\:\left({ii}\right)\:{are}\:{formed}. \\ $$
Commented by Tinkutara last updated on 29/Sep/17
Another way:  Since sec^2  x−tan^2  x=1  ⇒ (sec x−tan x)(sec x+tan x)=1  So if sec x+tan x=2012, then  sec x−tan x=(1/(2012))  Adding and subtracting we can get  sec x and tan x and thus all  trigonometric ratios.
$${Another}\:{way}: \\ $$$${Since}\:\mathrm{sec}^{\mathrm{2}} \:{x}−\mathrm{tan}^{\mathrm{2}} \:{x}=\mathrm{1} \\ $$$$\Rightarrow\:\left(\mathrm{sec}\:{x}−\mathrm{tan}\:{x}\right)\left(\mathrm{sec}\:{x}+\mathrm{tan}\:{x}\right)=\mathrm{1} \\ $$$${So}\:{if}\:\mathrm{sec}\:{x}+\mathrm{tan}\:{x}=\mathrm{2012},\:{then} \\ $$$$\mathrm{sec}\:{x}−\mathrm{tan}\:{x}=\frac{\mathrm{1}}{\mathrm{2012}} \\ $$$${Adding}\:{and}\:{subtracting}\:{we}\:{can}\:{get} \\ $$$$\mathrm{sec}\:{x}\:{and}\:\mathrm{tan}\:{x}\:{and}\:{thus}\:{all} \\ $$$${trigonometric}\:{ratios}. \\ $$
Commented by Joel577 last updated on 29/Sep/17
sec x − 1 ≠ tan x  tan x + 1 ≠ sec x
$$\mathrm{sec}\:{x}\:−\:\mathrm{1}\:\neq\:\mathrm{tan}\:{x} \\ $$$$\mathrm{tan}\:{x}\:+\:\mathrm{1}\:\neq\:\mathrm{sec}\:{x} \\ $$
Commented by Joel577 last updated on 30/Sep/17
Thanks for the idea
$${Thanks}\:{for}\:{the}\:{idea} \\ $$
Answered by $@ty@m last updated on 29/Sep/17
sec x + tan x = 2012  (1/(cosx ))+((sinx )/(cosx ))=2012  ((1+sinx )/(cosx ))=2012  (((cos(x/2) +sin(x/2) )^2 )/(cos^2 (x/2)−sin^2 (x/2)  ))=2012  ((cos(x/2) +sin(x/2))/(cos(x/2)−sin(x/2)  ))=2012  ((1+tan(x/2))/(1−tan (x/2)))=2012  1+tan(x/2)=2012(1−tan (x/2))  2013tan(x/2) =2011  2011cot(x/2)=2013   2011((cos(x/2) )/(sin(x/2) ))=2013  2011((2cos(x/2)cos(x/2) )/(2sin(x/2)cos(x/2) ))=2013  2011((2cos^2 (x/2) )/(sinx ))=2013  2011((1+cosx  )/(sinx ))=2013  2011(cosecx+cotx)=2013
$$\mathrm{sec}\:{x}\:+\:\mathrm{tan}\:{x}\:=\:\mathrm{2012} \\ $$$$\frac{\mathrm{1}}{\mathrm{cos}{x}\:}+\frac{\mathrm{sin}{x}\:}{\mathrm{cos}{x}\:}=\mathrm{2012} \\ $$$$\frac{\mathrm{1}+\mathrm{sin}{x}\:}{\mathrm{cos}{x}\:}=\mathrm{2012} \\ $$$$\frac{\left(\mathrm{cos}\frac{{x}}{\mathrm{2}}\:+\mathrm{sin}\frac{{x}}{\mathrm{2}}\:\right)^{\mathrm{2}} }{\mathrm{cos}^{\mathrm{2}} \frac{{x}}{\mathrm{2}}−\mathrm{sin}^{\mathrm{2}} \frac{{x}}{\mathrm{2}}\:\:}=\mathrm{2012} \\ $$$$\frac{\mathrm{cos}\frac{{x}}{\mathrm{2}}\:+\mathrm{sin}\frac{{x}}{\mathrm{2}}}{\mathrm{cos}\frac{{x}}{\mathrm{2}}−\mathrm{sin}\frac{{x}}{\mathrm{2}}\:\:}=\mathrm{2012} \\ $$$$\frac{\mathrm{1}+\mathrm{tan}\frac{{x}}{\mathrm{2}}}{\mathrm{1}−\mathrm{tan}\:\frac{{x}}{\mathrm{2}}}=\mathrm{2012} \\ $$$$\mathrm{1}+\mathrm{tan}\frac{{x}}{\mathrm{2}}=\mathrm{2012}\left(\mathrm{1}−\mathrm{tan}\:\frac{{x}}{\mathrm{2}}\right) \\ $$$$\mathrm{2013tan}\frac{{x}}{\mathrm{2}}\:=\mathrm{2011} \\ $$$$\mathrm{2011cot}\frac{{x}}{\mathrm{2}}=\mathrm{2013}\: \\ $$$$\mathrm{2011}\frac{\mathrm{cos}\frac{{x}}{\mathrm{2}}\:}{\mathrm{sin}\frac{{x}}{\mathrm{2}}\:}=\mathrm{2013} \\ $$$$\mathrm{2011}\frac{\mathrm{2cos}\frac{{x}}{\mathrm{2}}\mathrm{cos}\frac{{x}}{\mathrm{2}}\:}{\mathrm{2sin}\frac{{x}}{\mathrm{2}}\mathrm{cos}\frac{{x}}{\mathrm{2}}\:}=\mathrm{2013} \\ $$$$\mathrm{2011}\frac{\mathrm{2cos}^{\mathrm{2}} \frac{{x}}{\mathrm{2}}\:}{\mathrm{sin}{x}\:}=\mathrm{2013} \\ $$$$\mathrm{2011}\frac{\mathrm{1}+\mathrm{cos}{x}\:\:}{\mathrm{sin}{x}\:}=\mathrm{2013} \\ $$$$\mathrm{2011}\left(\mathrm{cosec}{x}+\mathrm{cot}{x}\right)=\mathrm{2013}\:\: \\ $$$$ \\ $$$$ \\ $$
Commented by Joel577 last updated on 30/Sep/17
Thank you very much. You made it very simple
$${Thank}\:{you}\:{very}\:{much}.\:{You}\:{made}\:{it}\:{very}\:{simple} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *