Menu Close

If-secA-tanA-Q-than-prove-that-cosecA-1-Q-2-1-Q-2-




Question Number 173894 by azadsir last updated on 20/Jul/22
If  secA − tanA = Q than prove that,          cosecA = ((1 + Q^2 )/(1 − Q^2 ))
IfsecAtanA=Qthanprovethat,cosecA=1+Q21Q2
Commented by cortano1 last updated on 20/Jul/22
Q=((1−sin A)/(cos A)) ⇒Q^2 cos^2 A=1+sin^2 A−2sin A  ⇒sin^2 A−Q^2 (1−sin^2 A)−2sin A+1=0  ⇒(1+Q^2 )sin^2 A−2sin A+1−Q^2 =0  ⇒sin A=((2 ± (√(4−4(1+Q^2 )(1−Q^2 ))))/(2(1+Q^2 )))  ⇒sin A=((2±(√(4−4(1−Q^4 ))))/(2(1+Q^2 )))  ⇒csc A= ((2(1+Q^2 ))/(2±2Q^2 )) = ((1+Q^2 )/(1±Q^2 ))   ⇒sin A≠1 ⇒csc A= ((1+Q^2 )/(1−Q^2 ))
Q=1sinAcosAQ2cos2A=1+sin2A2sinAsin2AQ2(1sin2A)2sinA+1=0(1+Q2)sin2A2sinA+1Q2=0sinA=2±44(1+Q2)(1Q2)2(1+Q2)sinA=2±44(1Q4)2(1+Q2)cscA=2(1+Q2)2±2Q2=1+Q21±Q2sinA1cscA=1+Q21Q2
Commented by azadsir last updated on 20/Jul/22
Thank you
Thankyou
Answered by blackmamba last updated on 20/Jul/22
  Q = ((1−sin A)/(cos A)) =((cos (1/2)A−sin (1/2)A)/(cos (1/2)A+sin (1/2)A))   Q=((1−tan (1/2)A)/(1+tan (1/2)A))   Q+Q tan (1/2)A= 1−tan (1/2)A   tan (1/2)A=((1−Q)/(1+Q))    { ((sin (1/2)A=((1−Q)/( (√(2+2Q^2 )))))),((cos (1/2)= ((1+Q)/( (√(2+2Q^2 )))))) :}   sin A = ((2(1−Q^2 ))/(2(1+Q^2 )))   (1/(sin A)) = ((1+Q^2 )/(1−Q^2 ))
Q=1sinAcosA=cos12Asin12Acos12A+sin12AQ=1tan12A1+tan12AQ+Qtan12A=1tan12Atan12A=1Q1+Q{sin12A=1Q2+2Q2cos12=1+Q2+2Q2sinA=2(1Q2)2(1+Q2)1sinA=1+Q21Q2
Commented by azadsir last updated on 20/Jul/22
Thank you
Thankyou
Commented by Tawa11 last updated on 21/Jul/22
Great sirs
Greatsirs
Answered by BaliramKumar last updated on 21/Jul/22
secA−tanA=Q  ((1−sinA)/(cosA)) = Q  (((1−sinA)^2 )/(cos^2 A)) = Q^2   (((1−sinA)^2 )/(1−sin^2 A)) = Q^2   (((1−sinA)^2 )/((1−sinA)(1+sinA))) = Q^2   (((1−sinA))/((1+sinA))) = Q^2   (((1+sinA))/((1−sinA))) = (1/Q^2 )  (((1+sinA)+(1−sinA))/((1+sinA)−(1−sinA))) = ((1+Q^2 )/(1−Q^2 ))        [∵ If   (a/b) = (c/d) then  ((a+b)/(a−b)) = ((c+d)/(c−d))  ]  (2/(2sinA)) = ((1+Q^2 )/(1−Q^2 ))  (1/(sinA)) = ((1+Q^2 )/(1−Q^2 ))  cosecA = ((1+Q^2 )/(1−Q^2 ))
secAtanA=Q1sinAcosA=Q(1sinA)2cos2A=Q2(1sinA)21sin2A=Q2(1sinA)2(1sinA)(1+sinA)=Q2(1sinA)(1+sinA)=Q2(1+sinA)(1sinA)=1Q2(1+sinA)+(1sinA)(1+sinA)(1sinA)=1+Q21Q2[Ifab=cdthena+bab=c+dcd]22sinA=1+Q21Q21sinA=1+Q21Q2cosecA=1+Q21Q2

Leave a Reply

Your email address will not be published. Required fields are marked *