Menu Close

If-sides-a-b-c-of-ABC-are-in-H-P-prove-that-sin-2-A-2-sin-2-B-2-sin-2-C-2-are-in-H-P-




Question Number 16041 by Tinkutara last updated on 17/Jun/17
If sides a, b, c of ΔABC are in H.P.,  prove that sin^2  ((A/2)), sin^2  ((B/2)), sin^2  ((C/2))  are in H.P.
Ifsidesa,b,cofΔABCareinH.P.,provethatsin2(A2),sin2(B2),sin2(C2)areinH.P.
Answered by Tinkutara last updated on 06/Jul/17
Let sin^2  ((A/2)), sin^2  ((B/2)), sin^2  ((C/2)) be in  H.P. and we have to prove a, b, c are in  H.P.  ⇒ (1/(sin^2  (B/2))) − (1/(sin^2  (A/2))) = (1/(sin^2  (C/2))) − (1/(sin^2  (B/2)))  sin^2  (C/2) (sin^2  (A/2) − sin^2  (B/2)) = sin^2  (A/2) (sin^2  (B/2) − sin^2  (C/2))  sin^2  (C/2) sin ((A + B)/2) sin ((A − B)/2) = sin^2  (A/2) sin ((B + C)/2) sin ((B − C)/2)  2 sin^2  (C/2) cos (C/2) sin ((A − B)/2) = 2 sin^2  (A/2) cos (A/2) sin ((B − C)/2)  sin (C/2) sin C sin ((A − B)/2) = sin (A/2) sin A sin ((B − C)/2)  ((sin A)/(sin C)) = ((2 sin (C/2) sin ((A − B)/2))/(2 sin (A/2) sin ((B − C)/2)))  (a/c) = ((sin A − sin B)/(sin B − sin C)) = ((a − b)/(b − c))  ∴ (2/b) = (1/a) + (1/c)
Letsin2(A2),sin2(B2),sin2(C2)beinH.P.andwehavetoprovea,b,careinH.P.1sin2B21sin2A2=1sin2C21sin2B2sin2C2(sin2A2sin2B2)=sin2A2(sin2B2sin2C2)sin2C2sinA+B2sinAB2=sin2A2sinB+C2sinBC22sin2C2cosC2sinAB2=2sin2A2cosA2sinBC2sinC2sinCsinAB2=sinA2sinAsinBC2sinAsinC=2sinC2sinAB22sinA2sinBC2ac=sinAsinBsinBsinC=abbc2b=1a+1c

Leave a Reply

Your email address will not be published. Required fields are marked *