Menu Close

If-sides-of-triangle-are-x-2-x-1-2x-1-and-x-2-1-prove-that-greatest-angle-is-120-Also-find-the-range-of-x-such-that-triangle-exist-




Question Number 15760 by Tinkutara last updated on 13/Jun/17
If sides of triangle are x^2  + x + 1,  2x + 1 and x^2  − 1, prove that greatest  angle is 120°. Also find the range of x  such that triangle exist.
Ifsidesoftrianglearex2+x+1,2x+1andx21,provethatgreatestangleis120°.Alsofindtherangeofxsuchthattriangleexist.
Answered by b.e.h.i.8.3.4.1.7@gmail.com last updated on 14/Jun/17
x^2 +x+1−(2x+1)=x^2 −x>0 if:x>0  x^2 +x+1−(x^2 −1)=x+2>0 if:x>0  so: the greatest side is: x^2 +x+1  cosA=(((x^2 −1)^2 +(2x+1)^2 −(x^2 +x+1)^2 )/(2(x^2 −1)(2x+1)))=  (x^2 −1)^2 +(2x+1)^2 −(x^2 +x+1)^2 =  (x^2 −1−x^2 −x−1)(x^2 −1+x^2 +x+1)+(2x+1)^2 =  =−x(x+2)(2x+1)+(2x+1)^2 =  =(2x+1)(2x+1−x^2 −2x)=(2x+1)(1−x^2 )  ⇒cosA=(((2x+1)(1−x^2 ))/(2(x^2 −1)(2x+1)))=((−1)/2)  ⇒∡A=120^•  .  2) x^2 +x+1<2x+1+x^2 −1⇒x>1   2a) x^2 +x+1>2x+1−x^2 +1⇒2x^2 −x−1>0  x=((1±(√(1+8)))/4)=1,((−1)/2)⇒x<((−1)/2) ∨ x>1  2b) x^2 +x+1>x^2 −1−(2x+1)⇒3x>−3  ⇒x>−1  so:  for: x>1 we have this triangle.
x2+x+1(2x+1)=x2x>0if:x>0x2+x+1(x21)=x+2>0if:x>0so:thegreatestsideis:x2+x+1cosA=(x21)2+(2x+1)2(x2+x+1)22(x21)(2x+1)=(x21)2+(2x+1)2(x2+x+1)2=(x21x2x1)(x21+x2+x+1)+(2x+1)2==x(x+2)(2x+1)+(2x+1)2==(2x+1)(2x+1x22x)=(2x+1)(1x2)cosA=(2x+1)(1x2)2(x21)(2x+1)=12A=120.2)x2+x+1<2x+1+x21x>12a)x2+x+1>2x+1x2+12x2x1>0x=1±1+84=1,12x<12x>12b)x2+x+1>x21(2x+1)3x>3x>1so:for:x>1wehavethistriangle.
Commented by Tinkutara last updated on 14/Jun/17
Thanks Sir!
ThanksSir!

Leave a Reply

Your email address will not be published. Required fields are marked *