Menu Close

If-sin-1-sin-2-sin-3-sin-44-cos-1-cos-2-cos-3-cos-44-then-4-4-3-4-2-4-




Question Number 115328 by bobhans last updated on 25/Sep/20
If ((sin 1°+sin 2°+sin 3°+...+sin 44°)/(cos 1°+cos 2°+cos 3°+...+cos 44°))=χ  then χ^4 +4χ^3 +4χ^2 +4=
$${If}\:\frac{\mathrm{sin}\:\mathrm{1}°+\mathrm{sin}\:\mathrm{2}°+\mathrm{sin}\:\mathrm{3}°+…+\mathrm{sin}\:\mathrm{44}°}{\mathrm{cos}\:\mathrm{1}°+\mathrm{cos}\:\mathrm{2}°+\mathrm{cos}\:\mathrm{3}°+…+\mathrm{cos}\:\mathrm{44}°}=\chi \\ $$$${then}\:\chi^{\mathrm{4}} +\mathrm{4}\chi^{\mathrm{3}} +\mathrm{4}\chi^{\mathrm{2}} +\mathrm{4}= \\ $$
Answered by bemath last updated on 25/Sep/20
  sin 44°+sin 1°=2sin (((45°)/2)).cos (((43°)/2))    sin 43°+sin 2°=2sin (((45°)/2)).cos (((41°)/2))      cos 44°+cos 1° = 2cos (((45°)/2))cos (((43°)/2))    cos 43°+cos 2° = 2cos (((45°)/2))cos (((41°)/2))     ((2sin (((45°)/2)) {cos (((43°)/2))+cos (((41°)/2))+...})/(2cos (((45°)/2)) {cos (((43°)/2))+cos (((41°)/2))+...})) = χ  so χ = tan (((45°)/2))  consider tan 2x = ((2tan x)/(1−tan^2 x))  put x = ((45°)/2)⇒1−tan^2 (((45°)/2))=2tan (((45°)/2))  let tan (((45°)/2)) = q → q^2 +2q−1=0   (q+1)^2  = 2 ⇒q = (√2) −1  hence χ = (√2) −1 or χ+1 = (√2)  now consider χ^4 +4χ^3 +4χ+4 =  χ^3 (χ+4)+4(χ+1) =  χ^3 (3+(√2))+4(√2) =   ((√2)−1)(3−2(√2))(3+(√2))+4(√2) =  ((√2)−1)(9−3(√2)−4)+4(√2)   = ((√2)−1)(5−3(√2))+4(√2)  = 5(√2)−6−5+3(√2) +4(√2)  =12(√2)−11
$$\:\:\mathrm{sin}\:\mathrm{44}°+\mathrm{sin}\:\mathrm{1}°=\mathrm{2sin}\:\left(\frac{\mathrm{45}°}{\mathrm{2}}\right).\mathrm{cos}\:\left(\frac{\mathrm{43}°}{\mathrm{2}}\right) \\ $$$$\:\:\mathrm{sin}\:\mathrm{43}°+\mathrm{sin}\:\mathrm{2}°=\mathrm{2sin}\:\left(\frac{\mathrm{45}°}{\mathrm{2}}\right).\mathrm{cos}\:\left(\frac{\mathrm{41}°}{\mathrm{2}}\right) \\ $$$$ \\ $$$$\:\:\mathrm{cos}\:\mathrm{44}°+\mathrm{cos}\:\mathrm{1}°\:=\:\mathrm{2cos}\:\left(\frac{\mathrm{45}°}{\mathrm{2}}\right)\mathrm{cos}\:\left(\frac{\mathrm{43}°}{\mathrm{2}}\right) \\ $$$$\:\:\mathrm{cos}\:\mathrm{43}°+\mathrm{cos}\:\mathrm{2}°\:=\:\mathrm{2cos}\:\left(\frac{\mathrm{45}°}{\mathrm{2}}\right)\mathrm{cos}\:\left(\frac{\mathrm{41}°}{\mathrm{2}}\right) \\ $$$$ \\ $$$$\:\frac{\mathrm{2sin}\:\left(\frac{\mathrm{45}°}{\mathrm{2}}\right)\:\left\{\mathrm{cos}\:\left(\frac{\mathrm{43}°}{\mathrm{2}}\right)+\mathrm{cos}\:\left(\frac{\mathrm{41}°}{\mathrm{2}}\right)+…\right\}}{\mathrm{2cos}\:\left(\frac{\mathrm{45}°}{\mathrm{2}}\right)\:\left\{\mathrm{cos}\:\left(\frac{\mathrm{43}°}{\mathrm{2}}\right)+\mathrm{cos}\:\left(\frac{\mathrm{41}°}{\mathrm{2}}\right)+…\right\}}\:=\:\chi \\ $$$${so}\:\chi\:=\:\mathrm{tan}\:\left(\frac{\mathrm{45}°}{\mathrm{2}}\right) \\ $$$${consider}\:\mathrm{tan}\:\mathrm{2}{x}\:=\:\frac{\mathrm{2tan}\:{x}}{\mathrm{1}−\mathrm{tan}\:^{\mathrm{2}} {x}} \\ $$$${put}\:{x}\:=\:\frac{\mathrm{45}°}{\mathrm{2}}\Rightarrow\mathrm{1}−\mathrm{tan}\:^{\mathrm{2}} \left(\frac{\mathrm{45}°}{\mathrm{2}}\right)=\mathrm{2tan}\:\left(\frac{\mathrm{45}°}{\mathrm{2}}\right) \\ $$$${let}\:\mathrm{tan}\:\left(\frac{\mathrm{45}°}{\mathrm{2}}\right)\:=\:{q}\:\rightarrow\:{q}^{\mathrm{2}} +\mathrm{2}{q}−\mathrm{1}=\mathrm{0} \\ $$$$\:\left({q}+\mathrm{1}\right)^{\mathrm{2}} \:=\:\mathrm{2}\:\Rightarrow{q}\:=\:\sqrt{\mathrm{2}}\:−\mathrm{1} \\ $$$${hence}\:\chi\:=\:\sqrt{\mathrm{2}}\:−\mathrm{1}\:{or}\:\chi+\mathrm{1}\:=\:\sqrt{\mathrm{2}} \\ $$$${now}\:{consider}\:\chi^{\mathrm{4}} +\mathrm{4}\chi^{\mathrm{3}} +\mathrm{4}\chi+\mathrm{4}\:= \\ $$$$\chi^{\mathrm{3}} \left(\chi+\mathrm{4}\right)+\mathrm{4}\left(\chi+\mathrm{1}\right)\:= \\ $$$$\chi^{\mathrm{3}} \left(\mathrm{3}+\sqrt{\mathrm{2}}\right)+\mathrm{4}\sqrt{\mathrm{2}}\:=\: \\ $$$$\left(\sqrt{\mathrm{2}}−\mathrm{1}\right)\left(\mathrm{3}−\mathrm{2}\sqrt{\mathrm{2}}\right)\left(\mathrm{3}+\sqrt{\mathrm{2}}\right)+\mathrm{4}\sqrt{\mathrm{2}}\:= \\ $$$$\left(\sqrt{\mathrm{2}}−\mathrm{1}\right)\left(\mathrm{9}−\mathrm{3}\sqrt{\mathrm{2}}−\mathrm{4}\right)+\mathrm{4}\sqrt{\mathrm{2}}\: \\ $$$$=\:\left(\sqrt{\mathrm{2}}−\mathrm{1}\right)\left(\mathrm{5}−\mathrm{3}\sqrt{\mathrm{2}}\right)+\mathrm{4}\sqrt{\mathrm{2}} \\ $$$$=\:\mathrm{5}\sqrt{\mathrm{2}}−\mathrm{6}−\mathrm{5}+\mathrm{3}\sqrt{\mathrm{2}}\:+\mathrm{4}\sqrt{\mathrm{2}} \\ $$$$=\mathrm{12}\sqrt{\mathrm{2}}−\mathrm{11} \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *