Menu Close

If-sin-10-x-cos-10-x-11-36-find-sin-12-x-cos-12-x-




Question Number 86878 by jagoll last updated on 01/Apr/20
If sin^(10)  (x) + cos^(10)  (x) = ((11)/(36))  find sin^(12)  (x) + cos ^(12) (x) = ?
Ifsin10(x)+cos10(x)=1136findsin12(x)+cos12(x)=?
Commented by Prithwish Sen 1 last updated on 01/Apr/20
I got  sin^2 xcos^2 x=(5/6) or(1/6)  now  sin^(12) x+cos^(12) x = 1−6sin^2 xcos^2 x+9sin^4 xcos^4 x                                      −2sin^6 xcos^6 x
Igotsin2xcos2x=56or16nowsin12x+cos12x=16sin2xcos2x+9sin4xcos4x2sin6xcos6x
Answered by mr W last updated on 01/Apr/20
let s=sin^2  x, c=cos^2  x  sin^(10)  x+cos^(10)  x=((11)/(36))  ⇒s^5 +c^5 =((11)/(36))  s+c=1  (s+c)^5 =1  s^5 +5s^4 c+10s^3 c^2 +10s^2 c^3 +5sc^4 +c^5 =1  s^5 +c^5 +5sc(s^3 +c^3 )+10s^2 c^2 (s+c)=1  s^5 +c^5 +5sc(s+c)[(s+c)^2 −3sc]+10(sc)^2 (s+c)=1  let λ=sc  ((11)/(36))+5λ[1−3λ]+10λ^2 =1  λ^2 −λ+(5/(36))=0  (λ−(1/6))(λ−(5/6))=0  ⇒λ=(1/6), λ=(5/6)>(1/4) ⇒not suitable  λ=(sin x cos x)^2 =(((sin 2x)/2))^2 ≤(1/4)  ⇒λ=(1/6)    (s+c)^6 =1  s^6 +6s^5 c+15s^4 c^2 +20s^3 c^3 +15s^2 c^4 +6sc^5 +c^6 =1  s^6 +c^6 +6sc(s^4 +c^4 )+15(sc)^2 (s^2 +c^2 )+20(sc)^3 =1  s^6 +c^6 +6sc[((s+c)^2 −2sc)^2 −2s^2 c^2 ]+15(sc)^2 [(s+c)^2 −2sc]+20(sc)^3 =1  s^6 +c^6 +6λ[(1−2λ)^2 −2λ^2 ]+15λ^2 [1−2λ]+20λ^3 =1  s^6 +c^6 +6λ−9λ^2 +2λ^3 =1  s^6 +c^6 =1−λ(2λ^2 −9λ+6)  s^6 +c^6 =1−(1/6)((1/(18))−(3/2)+6)=((13)/(54))  ⇒sin^(12)  x+cos^(12)  x=((13)/(54))
lets=sin2x,c=cos2xsin10x+cos10x=1136s5+c5=1136s+c=1(s+c)5=1s5+5s4c+10s3c2+10s2c3+5sc4+c5=1s5+c5+5sc(s3+c3)+10s2c2(s+c)=1s5+c5+5sc(s+c)[(s+c)23sc]+10(sc)2(s+c)=1letλ=sc1136+5λ[13λ]+10λ2=1λ2λ+536=0(λ16)(λ56)=0λ=16,λ=56>14notsuitableλ=(sinxcosx)2=(sin2x2)214λ=16(s+c)6=1s6+6s5c+15s4c2+20s3c3+15s2c4+6sc5+c6=1s6+c6+6sc(s4+c4)+15(sc)2(s2+c2)+20(sc)3=1s6+c6+6sc[((s+c)22sc)22s2c2]+15(sc)2[(s+c)22sc]+20(sc)3=1s6+c6+6λ[(12λ)22λ2]+15λ2[12λ]+20λ3=1s6+c6+6λ9λ2+2λ3=1s6+c6=1λ(2λ29λ+6)s6+c6=116(11832+6)=1354sin12x+cos12x=1354
Answered by MJS last updated on 01/Apr/20
sin x =±((tan x)/( (√(1+tan^2  x))))  cos x =±(1/( (√(1+tan^2  x))))  let tan x =t  sin^(10)  x +cos^(10)  x =((t^8 −t^6 +t^4 −t^2 +1)/((t^2 +1)^4 ))  sin^(12)  x +cos^(12)  x =((t^(12) +1)/((t^2 +1)^6 ))  ((t^8 −t^6 +t^4 −t^2 +1)/((t^2 +1)^4 ))=((11)/(36))  t^8 −((16)/5)t^6 −(6/5)t^4 −((16)/5)t^2 +1=0  (t^4 −4t^2 +1)(t^4 +(4/5)t^2 +1)=0  ⇒ t^2 =2±(√3)  sin^(12)  x +cos^(12)  x =((t^(12) +1)/((t^2 +1)^6 ))=((13)/(54))
sinx=±tanx1+tan2xcosx=±11+tan2xlettanx=tsin10x+cos10x=t8t6+t4t2+1(t2+1)4sin12x+cos12x=t12+1(t2+1)6t8t6+t4t2+1(t2+1)4=1136t8165t665t4165t2+1=0(t44t2+1)(t4+45t2+1)=0t2=2±3sin12x+cos12x=t12+1(t2+1)6=1354
Commented by Prithwish Sen 1 last updated on 01/Apr/20
Excellent. Thank you sir.
Excellent.Thankyousir.
Commented by jagoll last updated on 01/Apr/20
waww....super easy
waww.supereasy

Leave a Reply

Your email address will not be published. Required fields are marked *