Question Number 86878 by jagoll last updated on 01/Apr/20
$$\mathrm{If}\:\mathrm{sin}\:^{\mathrm{10}} \:\left(\mathrm{x}\right)\:+\:\mathrm{cos}\:^{\mathrm{10}} \:\left(\mathrm{x}\right)\:=\:\frac{\mathrm{11}}{\mathrm{36}} \\ $$$$\mathrm{find}\:\mathrm{sin}\:^{\mathrm{12}} \:\left(\mathrm{x}\right)\:+\:\mathrm{cos}\:\:^{\mathrm{12}} \left(\mathrm{x}\right)\:=\:? \\ $$
Commented by Prithwish Sen 1 last updated on 01/Apr/20
$$\mathrm{I}\:\mathrm{got} \\ $$$$\mathrm{sin}^{\mathrm{2}} \mathrm{xcos}^{\mathrm{2}} \mathrm{x}=\frac{\mathrm{5}}{\mathrm{6}}\:\mathrm{or}\frac{\mathrm{1}}{\mathrm{6}} \\ $$$$\mathrm{now} \\ $$$$\mathrm{sin}^{\mathrm{12}} \mathrm{x}+\mathrm{cos}^{\mathrm{12}} \mathrm{x}\:=\:\mathrm{1}−\mathrm{6sin}^{\mathrm{2}} \mathrm{xcos}^{\mathrm{2}} \mathrm{x}+\mathrm{9sin}^{\mathrm{4}} \mathrm{xcos}^{\mathrm{4}} \mathrm{x} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:−\mathrm{2sin}^{\mathrm{6}} \mathrm{xcos}^{\mathrm{6}} \mathrm{x} \\ $$
Answered by mr W last updated on 01/Apr/20
$${let}\:{s}=\mathrm{sin}^{\mathrm{2}} \:{x},\:{c}=\mathrm{cos}^{\mathrm{2}} \:{x} \\ $$$$\mathrm{sin}^{\mathrm{10}} \:{x}+\mathrm{cos}^{\mathrm{10}} \:{x}=\frac{\mathrm{11}}{\mathrm{36}} \\ $$$$\Rightarrow{s}^{\mathrm{5}} +{c}^{\mathrm{5}} =\frac{\mathrm{11}}{\mathrm{36}} \\ $$$${s}+{c}=\mathrm{1} \\ $$$$\left({s}+{c}\right)^{\mathrm{5}} =\mathrm{1} \\ $$$${s}^{\mathrm{5}} +\mathrm{5}{s}^{\mathrm{4}} {c}+\mathrm{10}{s}^{\mathrm{3}} {c}^{\mathrm{2}} +\mathrm{10}{s}^{\mathrm{2}} {c}^{\mathrm{3}} +\mathrm{5}{sc}^{\mathrm{4}} +{c}^{\mathrm{5}} =\mathrm{1} \\ $$$${s}^{\mathrm{5}} +{c}^{\mathrm{5}} +\mathrm{5}{sc}\left({s}^{\mathrm{3}} +{c}^{\mathrm{3}} \right)+\mathrm{10}{s}^{\mathrm{2}} {c}^{\mathrm{2}} \left({s}+{c}\right)=\mathrm{1} \\ $$$${s}^{\mathrm{5}} +{c}^{\mathrm{5}} +\mathrm{5}{sc}\left({s}+{c}\right)\left[\left({s}+{c}\right)^{\mathrm{2}} −\mathrm{3}{sc}\right]+\mathrm{10}\left({sc}\right)^{\mathrm{2}} \left({s}+{c}\right)=\mathrm{1} \\ $$$${let}\:\lambda={sc} \\ $$$$\frac{\mathrm{11}}{\mathrm{36}}+\mathrm{5}\lambda\left[\mathrm{1}−\mathrm{3}\lambda\right]+\mathrm{10}\lambda^{\mathrm{2}} =\mathrm{1} \\ $$$$\lambda^{\mathrm{2}} −\lambda+\frac{\mathrm{5}}{\mathrm{36}}=\mathrm{0} \\ $$$$\left(\lambda−\frac{\mathrm{1}}{\mathrm{6}}\right)\left(\lambda−\frac{\mathrm{5}}{\mathrm{6}}\right)=\mathrm{0} \\ $$$$\Rightarrow\lambda=\frac{\mathrm{1}}{\mathrm{6}},\:\lambda=\frac{\mathrm{5}}{\mathrm{6}}>\frac{\mathrm{1}}{\mathrm{4}}\:\Rightarrow{not}\:{suitable} \\ $$$$\lambda=\left(\mathrm{sin}\:{x}\:\mathrm{cos}\:{x}\right)^{\mathrm{2}} =\left(\frac{\mathrm{sin}\:\mathrm{2}{x}}{\mathrm{2}}\right)^{\mathrm{2}} \leqslant\frac{\mathrm{1}}{\mathrm{4}} \\ $$$$\Rightarrow\lambda=\frac{\mathrm{1}}{\mathrm{6}} \\ $$$$ \\ $$$$\left({s}+{c}\right)^{\mathrm{6}} =\mathrm{1} \\ $$$${s}^{\mathrm{6}} +\mathrm{6}{s}^{\mathrm{5}} {c}+\mathrm{15}{s}^{\mathrm{4}} {c}^{\mathrm{2}} +\mathrm{20}{s}^{\mathrm{3}} {c}^{\mathrm{3}} +\mathrm{15}{s}^{\mathrm{2}} {c}^{\mathrm{4}} +\mathrm{6}{sc}^{\mathrm{5}} +{c}^{\mathrm{6}} =\mathrm{1} \\ $$$${s}^{\mathrm{6}} +{c}^{\mathrm{6}} +\mathrm{6}{sc}\left({s}^{\mathrm{4}} +{c}^{\mathrm{4}} \right)+\mathrm{15}\left({sc}\right)^{\mathrm{2}} \left({s}^{\mathrm{2}} +{c}^{\mathrm{2}} \right)+\mathrm{20}\left({sc}\right)^{\mathrm{3}} =\mathrm{1} \\ $$$${s}^{\mathrm{6}} +{c}^{\mathrm{6}} +\mathrm{6}{sc}\left[\left(\left({s}+{c}\right)^{\mathrm{2}} −\mathrm{2}{sc}\right)^{\mathrm{2}} −\mathrm{2}{s}^{\mathrm{2}} {c}^{\mathrm{2}} \right]+\mathrm{15}\left({sc}\right)^{\mathrm{2}} \left[\left({s}+{c}\right)^{\mathrm{2}} −\mathrm{2}{sc}\right]+\mathrm{20}\left({sc}\right)^{\mathrm{3}} =\mathrm{1} \\ $$$${s}^{\mathrm{6}} +{c}^{\mathrm{6}} +\mathrm{6}\lambda\left[\left(\mathrm{1}−\mathrm{2}\lambda\right)^{\mathrm{2}} −\mathrm{2}\lambda^{\mathrm{2}} \right]+\mathrm{15}\lambda^{\mathrm{2}} \left[\mathrm{1}−\mathrm{2}\lambda\right]+\mathrm{20}\lambda^{\mathrm{3}} =\mathrm{1} \\ $$$${s}^{\mathrm{6}} +{c}^{\mathrm{6}} +\mathrm{6}\lambda−\mathrm{9}\lambda^{\mathrm{2}} +\mathrm{2}\lambda^{\mathrm{3}} =\mathrm{1} \\ $$$${s}^{\mathrm{6}} +{c}^{\mathrm{6}} =\mathrm{1}−\lambda\left(\mathrm{2}\lambda^{\mathrm{2}} −\mathrm{9}\lambda+\mathrm{6}\right) \\ $$$${s}^{\mathrm{6}} +{c}^{\mathrm{6}} =\mathrm{1}−\frac{\mathrm{1}}{\mathrm{6}}\left(\frac{\mathrm{1}}{\mathrm{18}}−\frac{\mathrm{3}}{\mathrm{2}}+\mathrm{6}\right)=\frac{\mathrm{13}}{\mathrm{54}} \\ $$$$\Rightarrow\mathrm{sin}^{\mathrm{12}} \:{x}+\mathrm{cos}^{\mathrm{12}} \:{x}=\frac{\mathrm{13}}{\mathrm{54}} \\ $$
Answered by MJS last updated on 01/Apr/20
$$\mathrm{sin}\:{x}\:=\pm\frac{\mathrm{tan}\:{x}}{\:\sqrt{\mathrm{1}+\mathrm{tan}^{\mathrm{2}} \:{x}}} \\ $$$$\mathrm{cos}\:{x}\:=\pm\frac{\mathrm{1}}{\:\sqrt{\mathrm{1}+\mathrm{tan}^{\mathrm{2}} \:{x}}} \\ $$$$\mathrm{let}\:\mathrm{tan}\:{x}\:={t} \\ $$$$\mathrm{sin}^{\mathrm{10}} \:{x}\:+\mathrm{cos}^{\mathrm{10}} \:{x}\:=\frac{{t}^{\mathrm{8}} −{t}^{\mathrm{6}} +{t}^{\mathrm{4}} −{t}^{\mathrm{2}} +\mathrm{1}}{\left({t}^{\mathrm{2}} +\mathrm{1}\right)^{\mathrm{4}} } \\ $$$$\mathrm{sin}^{\mathrm{12}} \:{x}\:+\mathrm{cos}^{\mathrm{12}} \:{x}\:=\frac{{t}^{\mathrm{12}} +\mathrm{1}}{\left({t}^{\mathrm{2}} +\mathrm{1}\right)^{\mathrm{6}} } \\ $$$$\frac{{t}^{\mathrm{8}} −{t}^{\mathrm{6}} +{t}^{\mathrm{4}} −{t}^{\mathrm{2}} +\mathrm{1}}{\left({t}^{\mathrm{2}} +\mathrm{1}\right)^{\mathrm{4}} }=\frac{\mathrm{11}}{\mathrm{36}} \\ $$$${t}^{\mathrm{8}} −\frac{\mathrm{16}}{\mathrm{5}}{t}^{\mathrm{6}} −\frac{\mathrm{6}}{\mathrm{5}}{t}^{\mathrm{4}} −\frac{\mathrm{16}}{\mathrm{5}}{t}^{\mathrm{2}} +\mathrm{1}=\mathrm{0} \\ $$$$\left({t}^{\mathrm{4}} −\mathrm{4}{t}^{\mathrm{2}} +\mathrm{1}\right)\left({t}^{\mathrm{4}} +\frac{\mathrm{4}}{\mathrm{5}}{t}^{\mathrm{2}} +\mathrm{1}\right)=\mathrm{0} \\ $$$$\Rightarrow\:{t}^{\mathrm{2}} =\mathrm{2}\pm\sqrt{\mathrm{3}} \\ $$$$\mathrm{sin}^{\mathrm{12}} \:{x}\:+\mathrm{cos}^{\mathrm{12}} \:{x}\:=\frac{{t}^{\mathrm{12}} +\mathrm{1}}{\left({t}^{\mathrm{2}} +\mathrm{1}\right)^{\mathrm{6}} }=\frac{\mathrm{13}}{\mathrm{54}} \\ $$
Commented by Prithwish Sen 1 last updated on 01/Apr/20
$$\mathrm{Excellent}.\:\mathrm{Thank}\:\mathrm{you}\:\mathrm{sir}. \\ $$
Commented by jagoll last updated on 01/Apr/20
$$\mathrm{waww}….\mathrm{super}\:\mathrm{easy}\: \\ $$