Question Number 86878 by jagoll last updated on 01/Apr/20

Commented by Prithwish Sen 1 last updated on 01/Apr/20

Answered by mr W last updated on 01/Apr/20
![let s=sin^2 x, c=cos^2 x sin^(10) x+cos^(10) x=((11)/(36)) ⇒s^5 +c^5 =((11)/(36)) s+c=1 (s+c)^5 =1 s^5 +5s^4 c+10s^3 c^2 +10s^2 c^3 +5sc^4 +c^5 =1 s^5 +c^5 +5sc(s^3 +c^3 )+10s^2 c^2 (s+c)=1 s^5 +c^5 +5sc(s+c)[(s+c)^2 −3sc]+10(sc)^2 (s+c)=1 let λ=sc ((11)/(36))+5λ[1−3λ]+10λ^2 =1 λ^2 −λ+(5/(36))=0 (λ−(1/6))(λ−(5/6))=0 ⇒λ=(1/6), λ=(5/6)>(1/4) ⇒not suitable λ=(sin x cos x)^2 =(((sin 2x)/2))^2 ≤(1/4) ⇒λ=(1/6) (s+c)^6 =1 s^6 +6s^5 c+15s^4 c^2 +20s^3 c^3 +15s^2 c^4 +6sc^5 +c^6 =1 s^6 +c^6 +6sc(s^4 +c^4 )+15(sc)^2 (s^2 +c^2 )+20(sc)^3 =1 s^6 +c^6 +6sc[((s+c)^2 −2sc)^2 −2s^2 c^2 ]+15(sc)^2 [(s+c)^2 −2sc]+20(sc)^3 =1 s^6 +c^6 +6λ[(1−2λ)^2 −2λ^2 ]+15λ^2 [1−2λ]+20λ^3 =1 s^6 +c^6 +6λ−9λ^2 +2λ^3 =1 s^6 +c^6 =1−λ(2λ^2 −9λ+6) s^6 +c^6 =1−(1/6)((1/(18))−(3/2)+6)=((13)/(54)) ⇒sin^(12) x+cos^(12) x=((13)/(54))](https://www.tinkutara.com/question/Q86925.png)
Answered by MJS last updated on 01/Apr/20

Commented by Prithwish Sen 1 last updated on 01/Apr/20

Commented by jagoll last updated on 01/Apr/20
