Menu Close

if-sin-2-x-sin-x-1-what-is-cos-12-x-3cos-10-x-3cos-8-x-cos-6-x-




Question Number 78709 by jagoll last updated on 20/Jan/20
if sin^2 x+sin x = 1  what is cos^(12) x+3cos^(10) x+3cos^8 x+cos^6 x
$$\mathrm{if}\:\mathrm{sin}\:^{\mathrm{2}} \mathrm{x}+\mathrm{sin}\:\mathrm{x}\:=\:\mathrm{1} \\ $$$$\mathrm{what}\:\mathrm{is}\:\mathrm{cos}\:^{\mathrm{12}} \mathrm{x}+\mathrm{3cos}\:^{\mathrm{10}} \mathrm{x}+\mathrm{3cos}\:^{\mathrm{8}} \mathrm{x}+\mathrm{cos}\:^{\mathrm{6}} \mathrm{x} \\ $$
Commented by jagoll last updated on 20/Jan/20
thanks sir john and sir som
$$\mathrm{thanks}\:\mathrm{sir}\:\mathrm{john}\:\mathrm{and}\:\mathrm{sir}\:\mathrm{som} \\ $$
Answered by john santu last updated on 20/Jan/20
Commented by john santu last updated on 20/Jan/20
edit : cos^6 x=(((3−(√5))/2))×((((√5)−1)/2))=(√5)−2  ∴ ((√5)−2){(√5)−2+((9−3(√5)+3(√5)−3)/2)+1}=  ((√5)−2)((√5)−1+(6/2)) =   ((√5)−2)((√5)+2)=5−4 =1 ★
$${edit}\::\:\mathrm{cos}\:^{\mathrm{6}} {x}=\left(\frac{\mathrm{3}−\sqrt{\mathrm{5}}}{\mathrm{2}}\right)×\left(\frac{\sqrt{\mathrm{5}}−\mathrm{1}}{\mathrm{2}}\right)=\sqrt{\mathrm{5}}−\mathrm{2} \\ $$$$\therefore\:\left(\sqrt{\mathrm{5}}−\mathrm{2}\right)\left\{\sqrt{\mathrm{5}}−\mathrm{2}+\frac{\mathrm{9}−\mathrm{3}\sqrt{\mathrm{5}}+\mathrm{3}\sqrt{\mathrm{5}}−\mathrm{3}}{\mathrm{2}}+\mathrm{1}\right\}= \\ $$$$\left(\sqrt{\mathrm{5}}−\mathrm{2}\right)\left(\sqrt{\mathrm{5}}−\mathrm{1}+\frac{\mathrm{6}}{\mathrm{2}}\right)\:=\: \\ $$$$\left(\sqrt{\mathrm{5}}−\mathrm{2}\right)\left(\sqrt{\mathrm{5}}+\mathrm{2}\right)=\mathrm{5}−\mathrm{4}\:=\mathrm{1}\:\bigstar \\ $$
Answered by som(math1967) last updated on 20/Jan/20
sin^2 x+sinx=1  sinx=1−sin^2 x=cos^2 x  ∴sin^2 x=cos^4 x  Now cos^(12) x+3cos^(10) x+3cos^8 x+cos^6 x  =(cos^4 x)^3 +3cos^4 x.cos^2 x(cos^4 x+cos^2 x)                                                       +(cos^2 x)^3   =(cos^4 x+cos^2 x)^3   =(sin^2 x+cos^2 x)^3 =1^3 =1ans ★  ★cos^4 x=sin^2 x from condition
$${sin}^{\mathrm{2}} {x}+{sinx}=\mathrm{1} \\ $$$${sinx}=\mathrm{1}−{sin}^{\mathrm{2}} {x}={cos}^{\mathrm{2}} {x} \\ $$$$\therefore{sin}^{\mathrm{2}} {x}={cos}^{\mathrm{4}} {x} \\ $$$${Now}\:{cos}^{\mathrm{12}} {x}+\mathrm{3}{cos}^{\mathrm{10}} {x}+\mathrm{3}{cos}^{\mathrm{8}} {x}+{cos}^{\mathrm{6}} {x} \\ $$$$=\left({cos}^{\mathrm{4}} {x}\right)^{\mathrm{3}} +\mathrm{3}{cos}^{\mathrm{4}} {x}.{cos}^{\mathrm{2}} {x}\left({cos}^{\mathrm{4}} {x}+{cos}^{\mathrm{2}} {x}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:+\left({cos}^{\mathrm{2}} {x}\right)^{\mathrm{3}} \\ $$$$=\left({cos}^{\mathrm{4}} {x}+{cos}^{\mathrm{2}} {x}\right)^{\mathrm{3}} \\ $$$$=\left({sin}^{\mathrm{2}} {x}+{cos}^{\mathrm{2}} {x}\right)^{\mathrm{3}} =\mathrm{1}^{\mathrm{3}} =\mathrm{1}{ans}\:\bigstar \\ $$$$\bigstar{cos}^{\mathrm{4}} {x}={sin}^{\mathrm{2}} {x}\:{from}\:{condition} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *