Question Number 164945 by mnjuly1970 last updated on 23/Jan/22
$$ \\ $$$$\:\:\mathrm{I}{f}\:\:\:\begin{cases}{\:\:{sin}\:\left(\:\mathrm{3}\theta\:\right)\:+\:{cos}\:\left(\:\mathrm{3}\theta\:\right)\:=\:{x}}\\{\:\:\:\:\:{sin}\left(\:\theta\:\right)\:+\:{cos}\:\left(\theta\:\right)\:=\:{y}}\end{cases} \\ $$$$\:\:\:\:\:\:\:\:{then}\:\:,\:{find}\:\:{a}\:{relationship}\: \\ $$$$\:\:\:\:\:\:\:\:{between}\:\:\:{x}\:\:,\:\:{y}\:\:\: \\ $$$$\:\:\:\:\:\:\:\:{indepentent}\:{of}\:,\:\:\:\theta\:. \\ $$
Answered by mr W last updated on 23/Jan/22
$${y}^{\mathrm{2}} =\mathrm{1}+\mathrm{2}\:\mathrm{sin}\:\theta\:\mathrm{cos}\:\theta \\ $$$$\Rightarrow\mathrm{sin}\:\theta\:\mathrm{cos}\:\theta=\frac{{y}^{\mathrm{2}} −\mathrm{1}}{\mathrm{2}} \\ $$$$\left(\mathrm{sin}\:\theta−\mathrm{cos}\:\theta\right)^{\mathrm{2}} =\mathrm{1}−\mathrm{2}\:\mathrm{sin}\:\theta\:\mathrm{cos}\:\rho=\mathrm{2}−{y}^{\mathrm{2}} \\ $$$$\mathrm{sin}\:\theta−\mathrm{cos}\:\theta=\pm\sqrt{\mathrm{2}−{y}^{\mathrm{2}} } \\ $$$${x}=\mathrm{sin}\:\left(\mathrm{3}\theta\right)+\mathrm{cos}\:\left(\mathrm{3}\theta\right) \\ $$$$=\mathrm{3}\:\mathrm{sin}\:\theta−\mathrm{4}\:\mathrm{sin}^{\mathrm{3}} \:\theta+\mathrm{4}\:\mathrm{cos}^{\mathrm{3}} \:\theta−\mathrm{3}\:\mathrm{cos}\:\theta \\ $$$$=\mathrm{3}\:\left(\mathrm{sin}\:\theta−\mathrm{cos}\:\theta\right)−\mathrm{4}\left(\mathrm{sin}^{\mathrm{3}} \:\theta−\mathrm{cos}^{\mathrm{3}} \:\theta\right) \\ $$$$=\mathrm{3}\:\left(\mathrm{sin}\:\theta−\mathrm{cos}\:\theta\right)−\mathrm{4}\left(\mathrm{sin}\:\theta−\mathrm{cos}\:\theta\right)\left(\mathrm{sin}^{\mathrm{2}} \:\theta+\mathrm{cos}^{\mathrm{2}} \:\theta+\mathrm{sin}\:\theta\:\mathrm{cos}\:\theta\right) \\ $$$$=\mathrm{3}\:\left(\mathrm{sin}\:\theta−\mathrm{cos}\:\theta\right)−\mathrm{4}\left(\mathrm{sin}\:\theta−\mathrm{cos}\:\theta\right)\left(\mathrm{1}+\mathrm{sin}\:\theta\:\mathrm{cos}\:\theta\right) \\ $$$$=−\left(\mathrm{sin}\:\theta−\mathrm{cos}\:\theta\right)\left(\mathrm{1}+\mathrm{4sin}\:\theta\:\mathrm{cos}\:\theta\right) \\ $$$$=\pm\sqrt{\mathrm{2}−{y}^{\mathrm{2}} }\left(\mathrm{1}+\mathrm{2}\left({y}^{\mathrm{2}} −\mathrm{1}\right)\right) \\ $$$$=\pm\sqrt{\mathrm{2}−{y}^{\mathrm{2}} }\left(\mathrm{2}{y}^{\mathrm{2}} −\mathrm{1}\right) \\ $$$$\Rightarrow{x}=\pm\sqrt{\mathrm{2}−{y}^{\mathrm{2}} }\left(\mathrm{2}{y}^{\mathrm{2}} −\mathrm{1}\right) \\ $$
Commented by mnjuly1970 last updated on 23/Jan/22
$$\:\:\:{thanks}\:{alot}\:{sir}\:{W}\:…{grateful} \\ $$
Commented by Tawa11 last updated on 23/Jan/22
$$\mathrm{Weldone}\:\mathrm{sir} \\ $$
Answered by TheSupreme last updated on 24/Jan/22
$${sin}\left(\theta+\frac{\pi}{\mathrm{4}}\right)=\frac{{y}}{\:\sqrt{\mathrm{2}}} \\ $$$${sin}\left(\mathrm{3}\theta+\frac{\pi}{\mathrm{4}}\right)=\frac{{x}}{\:\sqrt{\mathrm{2}}} \\ $$$$\theta={arcsin}\left(\frac{{y}}{\:\sqrt{\mathrm{2}}}\right)−\frac{\pi}{\mathrm{4}} \\ $$$$\mathrm{3}\theta={arcsin}\left(\frac{{x}}{\:\sqrt{\mathrm{2}}}\right)−\frac{\pi}{\mathrm{4}} \\ $$$${arcsin}\left(\frac{{y}}{\:\sqrt{\mathrm{2}}}\right)=\frac{\mathrm{1}}{\mathrm{3}}{arcsin}\left(\frac{{x}}{\:\sqrt{\mathrm{2}}}\right) \\ $$$${y}=\sqrt{\mathrm{2}}{sin}\left(\frac{\mathrm{1}}{\mathrm{3}}{arcsin}\left(\frac{{x}}{\:\sqrt{\mathrm{20}}}\right)\right) \\ $$
Commented by mnjuly1970 last updated on 24/Jan/22
$$\:\:\:{mercey}\:{sir}\:… \\ $$