Menu Close

If-sin-4-x-2-cos-4-x-3-1-5-then-sin-8-x-8-cos-8-x-27-




Question Number 128702 by bemath last updated on 09/Jan/21
 If ((sin^4 x)/2) + ((cos^4 x)/3) = (1/5) then    ((sin^8 x)/8) + ((cos^8 x)/(27)) = ?
$$\:\mathrm{If}\:\frac{\mathrm{sin}\:^{\mathrm{4}} \mathrm{x}}{\mathrm{2}}\:+\:\frac{\mathrm{cos}\:^{\mathrm{4}} \mathrm{x}}{\mathrm{3}}\:=\:\frac{\mathrm{1}}{\mathrm{5}}\:\mathrm{then}\: \\ $$$$\:\frac{\mathrm{sin}\:^{\mathrm{8}} \mathrm{x}}{\mathrm{8}}\:+\:\frac{\mathrm{cos}\:^{\mathrm{8}} \mathrm{x}}{\mathrm{27}}\:=\:? \\ $$
Answered by liberty last updated on 09/Jan/21
 ⇔ 15 sin^4 x+ 10 cos^4 x = 6   ⇔ 15 sin^4 x + 10(1−sin^2 x)^2 = 6   let sin^2 x = r ⇒ 15r^2  + 10(1−r)^2 −6 = 0   15r^2  +10(1−2r+r^2 )−6 = 0   25r^2 −20r + 4 = 0 ; (5r−2)^2 =0   r = (2/5)=sin^2 x then we get cos^2 x = (3/5)    Now ((sin^8 x)/8) + ((cos^8 x)/(27)) = (((((16)/(625))))/8) + (((((81)/(625))))/(27)) = (2/(625)) + (3/(625))=(1/(125))
$$\:\Leftrightarrow\:\mathrm{15}\:\mathrm{sin}\:^{\mathrm{4}} \mathrm{x}+\:\mathrm{10}\:\mathrm{cos}\:^{\mathrm{4}} \mathrm{x}\:=\:\mathrm{6} \\ $$$$\:\Leftrightarrow\:\mathrm{15}\:\mathrm{sin}\:^{\mathrm{4}} \mathrm{x}\:+\:\mathrm{10}\left(\mathrm{1}−\mathrm{sin}\:^{\mathrm{2}} \mathrm{x}\right)^{\mathrm{2}} =\:\mathrm{6} \\ $$$$\:\mathrm{let}\:\mathrm{sin}\:^{\mathrm{2}} \mathrm{x}\:=\:\mathrm{r}\:\Rightarrow\:\mathrm{15r}^{\mathrm{2}} \:+\:\mathrm{10}\left(\mathrm{1}−\mathrm{r}\right)^{\mathrm{2}} −\mathrm{6}\:=\:\mathrm{0} \\ $$$$\:\mathrm{15r}^{\mathrm{2}} \:+\mathrm{10}\left(\mathrm{1}−\mathrm{2r}+\mathrm{r}^{\mathrm{2}} \right)−\mathrm{6}\:=\:\mathrm{0} \\ $$$$\:\mathrm{25r}^{\mathrm{2}} −\mathrm{20r}\:+\:\mathrm{4}\:=\:\mathrm{0}\:;\:\left(\mathrm{5r}−\mathrm{2}\right)^{\mathrm{2}} =\mathrm{0} \\ $$$$\:\mathrm{r}\:=\:\frac{\mathrm{2}}{\mathrm{5}}=\mathrm{sin}\:^{\mathrm{2}} \mathrm{x}\:\mathrm{then}\:\mathrm{we}\:\mathrm{get}\:\mathrm{cos}\:^{\mathrm{2}} \mathrm{x}\:=\:\frac{\mathrm{3}}{\mathrm{5}} \\ $$$$ \\ $$$$\mathrm{Now}\:\frac{\mathrm{sin}\:^{\mathrm{8}} \mathrm{x}}{\mathrm{8}}\:+\:\frac{\mathrm{cos}\:^{\mathrm{8}} \mathrm{x}}{\mathrm{27}}\:=\:\frac{\left(\frac{\mathrm{16}}{\mathrm{625}}\right)}{\mathrm{8}}\:+\:\frac{\left(\frac{\mathrm{81}}{\mathrm{625}}\right)}{\mathrm{27}}\:=\:\frac{\mathrm{2}}{\mathrm{625}}\:+\:\frac{\mathrm{3}}{\mathrm{625}}=\frac{\mathrm{1}}{\mathrm{125}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *