Menu Close

If-sin-45-x-1-3-where-45-lt-x-lt-90-What-is-the-value-of-6sin-x-2-2-




Question Number 116441 by bobhans last updated on 04/Oct/20
If sin (45°−x) = −(1/3) , where 45°<x<90°  .What is the value of (6sin x−(√2))^2
$$\mathrm{If}\:\mathrm{sin}\:\left(\mathrm{45}°−\mathrm{x}\right)\:=\:−\frac{\mathrm{1}}{\mathrm{3}}\:,\:\mathrm{where}\:\mathrm{45}°<\mathrm{x}<\mathrm{90}° \\ $$$$.\mathrm{What}\:\mathrm{is}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\left(\mathrm{6sin}\:\mathrm{x}−\sqrt{\mathrm{2}}\right)^{\mathrm{2}} \\ $$
Answered by bemath last updated on 04/Oct/20
⇒sin (x−45) = (1/3)  ⇒((√2)/2) sin x−((√2)/2) cos x = (1/3)  ⇒(√2) sin x − (√2) cos x = (2/3)  ⇒ sin x−cos x = ((√2)/3)  ⇒ sin x−((√2)/3) = (√(1−sin^2 x))  ⇒sin^2 x−((2(√2))/3) sin x +(2/9) = 1−sin^2 x  ⇒2 sin^2 x−((2(√2))/3) sin x−(7/9)=0  ⇒sin x = ((((2(√2))/3) + (√((8/9)+((56)/9))))/4)  ⇒ sin x = ((2(√2) +8)/(12)) = ((4+(√2))/6)  ⇒6 sin x = 4+(√2)  ⇒(6sin x−(√2))^2  = 16
$$\Rightarrow\mathrm{sin}\:\left(\mathrm{x}−\mathrm{45}\right)\:=\:\frac{\mathrm{1}}{\mathrm{3}} \\ $$$$\Rightarrow\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}\:\mathrm{sin}\:\mathrm{x}−\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}\:\mathrm{cos}\:\mathrm{x}\:=\:\frac{\mathrm{1}}{\mathrm{3}} \\ $$$$\Rightarrow\sqrt{\mathrm{2}}\:\mathrm{sin}\:\mathrm{x}\:−\:\sqrt{\mathrm{2}}\:\mathrm{cos}\:\mathrm{x}\:=\:\frac{\mathrm{2}}{\mathrm{3}} \\ $$$$\Rightarrow\:\mathrm{sin}\:\mathrm{x}−\mathrm{cos}\:\mathrm{x}\:=\:\frac{\sqrt{\mathrm{2}}}{\mathrm{3}} \\ $$$$\Rightarrow\:\mathrm{sin}\:\mathrm{x}−\frac{\sqrt{\mathrm{2}}}{\mathrm{3}}\:=\:\sqrt{\mathrm{1}−\mathrm{sin}\:^{\mathrm{2}} \mathrm{x}} \\ $$$$\Rightarrow\mathrm{sin}\:^{\mathrm{2}} \mathrm{x}−\frac{\mathrm{2}\sqrt{\mathrm{2}}}{\mathrm{3}}\:\mathrm{sin}\:\mathrm{x}\:+\frac{\mathrm{2}}{\mathrm{9}}\:=\:\mathrm{1}−\mathrm{sin}\:^{\mathrm{2}} \mathrm{x} \\ $$$$\Rightarrow\mathrm{2}\:\mathrm{sin}\:^{\mathrm{2}} \mathrm{x}−\frac{\mathrm{2}\sqrt{\mathrm{2}}}{\mathrm{3}}\:\mathrm{sin}\:\mathrm{x}−\frac{\mathrm{7}}{\mathrm{9}}=\mathrm{0} \\ $$$$\Rightarrow\mathrm{sin}\:\mathrm{x}\:=\:\frac{\frac{\mathrm{2}\sqrt{\mathrm{2}}}{\mathrm{3}}\:+\:\sqrt{\frac{\mathrm{8}}{\mathrm{9}}+\frac{\mathrm{56}}{\mathrm{9}}}}{\mathrm{4}} \\ $$$$\Rightarrow\:\mathrm{sin}\:\mathrm{x}\:=\:\frac{\mathrm{2}\sqrt{\mathrm{2}}\:+\mathrm{8}}{\mathrm{12}}\:=\:\frac{\mathrm{4}+\sqrt{\mathrm{2}}}{\mathrm{6}} \\ $$$$\Rightarrow\mathrm{6}\:\mathrm{sin}\:\mathrm{x}\:=\:\mathrm{4}+\sqrt{\mathrm{2}} \\ $$$$\Rightarrow\left(\mathrm{6sin}\:\mathrm{x}−\sqrt{\mathrm{2}}\right)^{\mathrm{2}} \:=\:\mathrm{16} \\ $$
Commented by bobhans last updated on 04/Oct/20
cooll
$$\mathrm{cooll} \\ $$
Answered by Dwaipayan Shikari last updated on 04/Oct/20
(1/( (√2)))cosx−(1/( (√2)))sinx=−(1/3)  sinx−cosx=((√2)/3)  sin^2 x−2((√2)/3)sinx+(2/9)=cos^2 x  2sin^2 x−((2(√2))/3)sinx−(7/9)=0  sinx=((((2(√2))/3)±(√((8/9)+((56)/9))))/4)=((((√2)/3)±(4/3))/2)=((4±(√2))/6)  (6sinx−(√2))^2 =4^2 =16 (As (π/4)<x<(π/2))
$$\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\mathrm{cosx}−\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\mathrm{sinx}=−\frac{\mathrm{1}}{\mathrm{3}} \\ $$$$\mathrm{sinx}−\mathrm{cosx}=\frac{\sqrt{\mathrm{2}}}{\mathrm{3}} \\ $$$$\mathrm{sin}^{\mathrm{2}} \mathrm{x}−\mathrm{2}\frac{\sqrt{\mathrm{2}}}{\mathrm{3}}\mathrm{sinx}+\frac{\mathrm{2}}{\mathrm{9}}=\mathrm{cos}^{\mathrm{2}} \mathrm{x} \\ $$$$\mathrm{2sin}^{\mathrm{2}} \mathrm{x}−\frac{\mathrm{2}\sqrt{\mathrm{2}}}{\mathrm{3}}\mathrm{sinx}−\frac{\mathrm{7}}{\mathrm{9}}=\mathrm{0} \\ $$$$\mathrm{sinx}=\frac{\frac{\mathrm{2}\sqrt{\mathrm{2}}}{\mathrm{3}}\pm\sqrt{\frac{\mathrm{8}}{\mathrm{9}}+\frac{\mathrm{56}}{\mathrm{9}}}}{\mathrm{4}}=\frac{\frac{\sqrt{\mathrm{2}}}{\mathrm{3}}\pm\frac{\mathrm{4}}{\mathrm{3}}}{\mathrm{2}}=\frac{\mathrm{4}\pm\sqrt{\mathrm{2}}}{\mathrm{6}} \\ $$$$\left(\mathrm{6sinx}−\sqrt{\mathrm{2}}\right)^{\mathrm{2}} =\mathrm{4}^{\mathrm{2}} =\mathrm{16}\:\left(\mathrm{As}\:\frac{\pi}{\mathrm{4}}<\mathrm{x}<\frac{\pi}{\mathrm{2}}\right) \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *