Menu Close

If-sin-A-B-1-10-cos-A-B-2-29-0-lt-A-lt-pi-4-0-lt-B-lt-pi-4-Find-tan-2A-




Question Number 164391 by bobhans last updated on 16/Jan/22
  If  { ((sin (A−B)=(1/( (√(10)))))),((cos (A+B)=(2/( (√(29)))))) :}; 0<A<(π/4) ; 0<B<(π/4)   Find tan 2A.
$$\:\:\mathrm{If}\:\begin{cases}{\mathrm{sin}\:\left(\mathrm{A}−\mathrm{B}\right)=\frac{\mathrm{1}}{\:\sqrt{\mathrm{10}}}}\\{\mathrm{cos}\:\left(\mathrm{A}+\mathrm{B}\right)=\frac{\mathrm{2}}{\:\sqrt{\mathrm{29}}}}\end{cases};\:\mathrm{0}<\mathrm{A}<\frac{\pi}{\mathrm{4}}\:;\:\mathrm{0}<\mathrm{B}<\frac{\pi}{\mathrm{4}} \\ $$$$\:\mathrm{Find}\:\mathrm{tan}\:\mathrm{2A}. \\ $$
Answered by cortano1 last updated on 16/Jan/22
   {: ((sin (A−B)=(1/( (√(10)))))),((cos (A+B)=(2/( (√(29)))))) } ⇒ { ((0<A+B<(π/2))),((−(π/4)<A−B<(π/4))) :}    { ((tan (A−B)=(1/3))),((tan (A+B)=(5/2))) :}   ⇒tan 2A= ((tan (A+B)+tan (A−B))/(1−tan (A+B).tan (A−B)))        tan 2A = (((5/2)+(1/3))/(1−(5/6))) = 17
$$\:\:\left.\begin{matrix}{\mathrm{sin}\:\left({A}−{B}\right)=\frac{\mathrm{1}}{\:\sqrt{\mathrm{10}}}}\\{\mathrm{cos}\:\left({A}+{B}\right)=\frac{\mathrm{2}}{\:\sqrt{\mathrm{29}}}}\end{matrix}\right\}\:\Rightarrow\begin{cases}{\mathrm{0}<{A}+{B}<\frac{\pi}{\mathrm{2}}}\\{−\frac{\pi}{\mathrm{4}}<{A}−{B}<\frac{\pi}{\mathrm{4}}}\end{cases} \\ $$$$\:\begin{cases}{\mathrm{tan}\:\left({A}−{B}\right)=\frac{\mathrm{1}}{\mathrm{3}}}\\{\mathrm{tan}\:\left({A}+{B}\right)=\frac{\mathrm{5}}{\mathrm{2}}}\end{cases} \\ $$$$\:\Rightarrow\mathrm{tan}\:\mathrm{2}{A}=\:\frac{\mathrm{tan}\:\left({A}+{B}\right)+\mathrm{tan}\:\left({A}−{B}\right)}{\mathrm{1}−\mathrm{tan}\:\left({A}+{B}\right).\mathrm{tan}\:\left({A}−{B}\right)} \\ $$$$\:\:\:\:\:\:\mathrm{tan}\:\mathrm{2}{A}\:=\:\frac{\frac{\mathrm{5}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{3}}}{\mathrm{1}−\frac{\mathrm{5}}{\mathrm{6}}}\:=\:\mathrm{17} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *