Menu Close

if-sin-x-3-cos-x-1-2-3-sin-4x-cos-4x-




Question Number 191344 by mnjuly1970 last updated on 23/Apr/23
        if   sin(x) + (√3) cos (x) = (1/2)         ⇒(√3)  sin(4x ) −  cos (4x )= ?
ifsin(x)+3cos(x)=123sin(4x)cos(4x)=?
Answered by mehdee42 last updated on 23/Apr/23
(1/2)sinx+((√3)/2)cosx=(1/4)⇒cos(x−30)=(1/4)  ⇒cos(2x−60)=2((1/(16)))−1=−(7/8)  ⇒cos(4x−120)=2(((49)/(16)))−1=((41)/8)  ∴  2(((49)/(64)))−1=((17)/(32))  ⇒cos4xcos120+sin4xsin120=((41)/8)  ∴  =((17)/(32))  −(1/2)cos4x+((√3)/2)sin4x=((41)/8)  ∴  =((17)/(32))  ⇒(√3)sin4x−cos4x=((41)/4) ∴  ((17)/(16))
12sinx+32cosx=14cos(x30)=14cos(2x60)=2(116)1=78cos(4x120)=2(4916)1=4182(4964)1=1732cos4xcos120+sin4xsin120=418=173212cos4x+32sin4x=418=17323sin4xcos4x=4141716
Commented by mr W last updated on 23/Apr/23
very nice sir!
verynicesir!
Commented by mehdee42 last updated on 23/Apr/23
hello sir  W  my mistakewas in the calculation , which i have corrected   with red color.thank you
hellosirWmymistakewasinthecalculation,whichihavecorrectedwithredcolor.thankyou
Answered by mr W last updated on 23/Apr/23
((sin x)/2)+((√3)/2) cos x=(1/4)  sin x sin (π/6)+cos x cos (π/6)=(1/4)  cos (x−(π/6))=(1/4)  ⇒x−(π/6)=2kπ±cos^(−1)  (1/4)  ⇒x=2kπ+(π/6)±cos^(−1)  (1/4)    (√3) sin 4x−cos 4x  =2(sin 4x cos (π/6)−cos 4x sin (π/6))  =2 sin (4x−(π/6))  =2 sin (8kπ+(π/2)±4 cos^(−1) (1/4))  =2 cos (4 cos^(−1) (1/4))  =2 [2 cos^2  (2 cos^(−1) (1/4))−1]  =2 [2 {2 cos^2   (cos^(−1) (1/4))−1}^2 −1]  =2 [2 {2×(1/4^2 )−1}^2 −1]  =2 [2 {(7/8)}^2 −1]  =((17)/(16)) ✓
sinx2+32cosx=14sinxsinπ6+cosxcosπ6=14cos(xπ6)=14xπ6=2kπ±cos114x=2kπ+π6±cos1143sin4xcos4x=2(sin4xcosπ6cos4xsinπ6)=2sin(4xπ6)=2sin(8kπ+π2±4cos114)=2cos(4cos114)=2[2cos2(2cos114)1]=2[2{2cos2(cos114)1}21]=2[2{2×1421}21]=2[2{78}21]=1716
Commented by mnjuly1970 last updated on 23/Apr/23
 very nice solution
verynicesolution
Answered by cortano12 last updated on 23/Apr/23
 ⇒sin^2 x+3cos^2 x+(√3) sin 2x = (1/4)  ⇒(((1−cos 2x)/2))+3(((1+cos 2x)/2))+(√3) sin 2x=(1/4)  ⇒4+2cos 2x+2(√3) sin 2x=(1/2)  ⇒2cos 2x+2(√3) sin 2x=−(7/2)  ⇒4cos^2 2x+12sin^2 2x+4(√3) sin 4x=((49)/4)  ⇒4(((1+cos 4x)/2))+12(((1−cos 4x)/2))+4(√3) sin 4x=((49)/4)  ⇒8−4cos 4x+4(√3) sin 4x=((49)/4)  ⇒(√3) sin 4x−cos 4x=((49)/(16))−2  ⇒(√3) sin 4x−cos 4x=((17)/(16))
sin2x+3cos2x+3sin2x=14(1cos2x2)+3(1+cos2x2)+3sin2x=144+2cos2x+23sin2x=122cos2x+23sin2x=724cos22x+12sin22x+43sin4x=4944(1+cos4x2)+12(1cos4x2)+43sin4x=49484cos4x+43sin4x=4943sin4xcos4x=491623sin4xcos4x=1716
Commented by mnjuly1970 last updated on 23/Apr/23
thanks alot sir cortano ⋛
thanksalotsircortanothanksalotsircortano\cancel

Leave a Reply

Your email address will not be published. Required fields are marked *