Menu Close

If-sin-x-cos-x-2-3-find-1-sin-x-1-cos-x-




Question Number 86486 by jagoll last updated on 29/Mar/20
If sin x + cos x = (2/3)  find (1/(sin x)) + (1/(cos x)) = ?
$$\mathrm{If}\:\mathrm{sin}\:\mathrm{x}\:+\:\mathrm{cos}\:\mathrm{x}\:=\:\frac{\mathrm{2}}{\mathrm{3}} \\ $$$$\mathrm{find}\:\frac{\mathrm{1}}{\mathrm{sin}\:\mathrm{x}}\:+\:\frac{\mathrm{1}}{\mathrm{cos}\:\mathrm{x}}\:=\:? \\ $$
Commented by john santu last updated on 29/Mar/20
⇒ ((sin x+cos x)/(sin x cos x)) = (i)  ⇒ (sin x+cos x)^2  = (4/9)  1+2sin x cos x = (4/9)  sin x cos x = −(5/(18))  ⇒(i) = ((2/3)/(−(5/(18)))) =−(2/3)×((18)/5)  = −((12)/5)
$$\Rightarrow\:\frac{\mathrm{sin}\:\mathrm{x}+\mathrm{cos}\:\mathrm{x}}{\mathrm{sin}\:\mathrm{x}\:\mathrm{cos}\:\mathrm{x}}\:=\:\left(\mathrm{i}\right) \\ $$$$\Rightarrow\:\left(\mathrm{sin}\:\mathrm{x}+\mathrm{cos}\:\mathrm{x}\right)^{\mathrm{2}} \:=\:\frac{\mathrm{4}}{\mathrm{9}} \\ $$$$\mathrm{1}+\mathrm{2sin}\:\mathrm{x}\:\mathrm{cos}\:\mathrm{x}\:=\:\frac{\mathrm{4}}{\mathrm{9}} \\ $$$$\mathrm{sin}\:\mathrm{x}\:\mathrm{cos}\:\mathrm{x}\:=\:−\frac{\mathrm{5}}{\mathrm{18}} \\ $$$$\Rightarrow\left(\mathrm{i}\right)\:=\:\frac{\frac{\mathrm{2}}{\mathrm{3}}}{−\frac{\mathrm{5}}{\mathrm{18}}}\:=−\frac{\mathrm{2}}{\mathrm{3}}×\frac{\mathrm{18}}{\mathrm{5}} \\ $$$$=\:−\frac{\mathrm{12}}{\mathrm{5}} \\ $$
Commented by Serlea last updated on 29/Mar/20
(sinx+cosx)^2 =(4/9)  sin^2 x+cos^2 x+sin2x=(4/9)  1+sin2x=(4/9)  sin2x=((−5)/9)  (1/(sinx))+(1/(cosx))=Y  ((sinx+cosx)/(sinxcosx))=Y  sinx+cosx=Ysinxcosx  (2/3)=Ysinxcosx  2=3Ysinxcosx  2(2)=3y×2sinxcosx  4=3Ysin2x  (4/(3Y))=((−5)/9)  (4/y)=((−5)/3)  y=−((12)/5)
$$\left(\mathrm{sinx}+\mathrm{cosx}\right)^{\mathrm{2}} =\frac{\mathrm{4}}{\mathrm{9}} \\ $$$$\mathrm{sin}^{\mathrm{2}} \mathrm{x}+\mathrm{cos}^{\mathrm{2}} \mathrm{x}+\mathrm{sin2x}=\frac{\mathrm{4}}{\mathrm{9}} \\ $$$$\mathrm{1}+\mathrm{sin2x}=\frac{\mathrm{4}}{\mathrm{9}} \\ $$$$\mathrm{sin2x}=\frac{−\mathrm{5}}{\mathrm{9}} \\ $$$$\frac{\mathrm{1}}{\mathrm{sinx}}+\frac{\mathrm{1}}{\mathrm{cosx}}=\mathrm{Y} \\ $$$$\frac{\mathrm{sinx}+\mathrm{cosx}}{\mathrm{sinxcosx}}=\mathrm{Y} \\ $$$$\mathrm{sinx}+\mathrm{cosx}=\mathrm{Ysinxcosx} \\ $$$$\frac{\mathrm{2}}{\mathrm{3}}=\mathrm{Ysinxcosx} \\ $$$$\mathrm{2}=\mathrm{3Ysinxcosx} \\ $$$$\mathrm{2}\left(\mathrm{2}\right)=\mathrm{3y}×\mathrm{2sinxcosx} \\ $$$$\mathrm{4}=\mathrm{3Ysin2x} \\ $$$$\frac{\mathrm{4}}{\mathrm{3Y}}=\frac{−\mathrm{5}}{\mathrm{9}} \\ $$$$\frac{\mathrm{4}}{\mathrm{y}}=\frac{−\mathrm{5}}{\mathrm{3}} \\ $$$$\mathrm{y}=−\frac{\mathrm{12}}{\mathrm{5}} \\ $$
Commented by jagoll last updated on 29/Mar/20
sin x + cos x = (2/3) sir  not = 1
$$\mathrm{sin}\:\mathrm{x}\:+\:\mathrm{cos}\:\mathrm{x}\:=\:\frac{\mathrm{2}}{\mathrm{3}}\:\mathrm{sir} \\ $$$$\mathrm{not}\:=\:\mathrm{1} \\ $$
Commented by jagoll last updated on 29/Mar/20
something wrong
$$\mathrm{something}\:\mathrm{wrong} \\ $$
Commented by Serlea last updated on 29/Mar/20
Thanks  I was correcting it already  It was oversight
$$\mathrm{Thanks} \\ $$$$\mathrm{I}\:\mathrm{was}\:\mathrm{correcting}\:\mathrm{it}\:\mathrm{already} \\ $$$$\mathrm{It}\:\mathrm{was}\:\mathrm{oversight} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *