Menu Close

if-sin-x-msin-y-so-proof-that-tan-1-2-x-y-m-1-m-1-tan-1-2-x-y-




Question Number 20886 by tammi last updated on 06/Sep/17
if sin x=msin y  so proof that  tan (1/2)(x−y)=((m−1)/(m+1))tan (1/2)(x+y)
$${if}\:\mathrm{sin}\:{x}={m}\mathrm{sin}\:{y} \\ $$$${so}\:{proof}\:{that} \\ $$$$\mathrm{tan}\:\frac{\mathrm{1}}{\mathrm{2}}\left({x}−{y}\right)=\frac{{m}−\mathrm{1}}{{m}+\mathrm{1}}\mathrm{tan}\:\frac{\mathrm{1}}{\mathrm{2}}\left({x}+{y}\right) \\ $$
Answered by ajfour last updated on 06/Sep/17
m=((sin x)/(sin y))    ⇒  ((m−1)/(m+1))=((sin x−sin y)/(sin x+sin y))      =((2sin (((x−y)/2))cos (((x+y)/2)))/(2sin (((x+y)/2))cos (((x−y)/2))))     =((tan (((x−y)/2)))/(tan (((x+y)/2))))  ⇒ tan (((x−y)/2))=(((m−1)/(m+1)))tan (((x+y)/2)).
$${m}=\frac{\mathrm{sin}\:{x}}{\mathrm{sin}\:{y}}\:\:\:\:\Rightarrow\:\:\frac{{m}−\mathrm{1}}{{m}+\mathrm{1}}=\frac{\mathrm{sin}\:{x}−\mathrm{sin}\:{y}}{\mathrm{sin}\:{x}+\mathrm{sin}\:{y}} \\ $$$$\:\:\:\:=\frac{\mathrm{2sin}\:\left(\frac{{x}−{y}}{\mathrm{2}}\right)\mathrm{cos}\:\left(\frac{{x}+{y}}{\mathrm{2}}\right)}{\mathrm{2sin}\:\left(\frac{{x}+{y}}{\mathrm{2}}\right)\mathrm{cos}\:\left(\frac{{x}−{y}}{\mathrm{2}}\right)} \\ $$$$\:\:\:=\frac{\mathrm{tan}\:\left(\frac{{x}−{y}}{\mathrm{2}}\right)}{\mathrm{tan}\:\left(\frac{{x}+{y}}{\mathrm{2}}\right)} \\ $$$$\Rightarrow\:\mathrm{tan}\:\left(\frac{{x}−{y}}{\mathrm{2}}\right)=\left(\frac{{m}−\mathrm{1}}{{m}+\mathrm{1}}\right)\mathrm{tan}\:\left(\frac{{x}+{y}}{\mathrm{2}}\right). \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *