Menu Close

If-t-denotes-the-integral-part-of-t-then-lim-x-1-x-sin-pix-A-equals-1-B-equals-1-C-equals-0-D-does-not-exist-




Question Number 186758 by EnterUsername last updated on 09/Feb/23
If [t] denotes the integral part of t, then lim_(x→1) [x sin πx]  (A)  equals 1                               (B)  equals −1  (C)  equals 0                               (D) does not exist
If[t]denotestheintegralpartoft,thenlimx1[xsinπx](A)equals1(B)equals1(C)equals0(D)doesnotexist
Answered by Gazella thomsonii last updated on 10/Feb/23
lim_(x→1)  ∫ xsin(πx)dx=lim_(x→1)  ((1/π))^2 ∙(sin(πx)−πxcos(πx)  (1/π^2 )    (D)∙∙∙∙ Dosen′t Exist
limx1xsin(πx)dx=limx1(1π)2(sin(πx)πxcos(πx)1π2(D)DosentExist
Answered by mr W last updated on 10/Feb/23
lim_(x→1^− ) [x sin πx]=0  lim_(x→1^+ ) [x sin πx]=−1  ⇒lim_(x→1) [x sin πx] doesn′t exist!
limx1[xsinπx]=0limx1+[xsinπx]=1limx1[xsinπx]doesntexist!
Commented by EnterUsername last updated on 10/Feb/23
Thank you, Sir.

Leave a Reply

Your email address will not be published. Required fields are marked *