Menu Close

If-tan-11-x-then-tan-1-




Question Number 189482 by MATHEMATICSAM last updated on 17/Mar/23
If tan 11° = x then tan 1° = ?
Iftan11°=xthentan1°=?
Answered by Frix last updated on 17/Mar/23
tan 11° =tan (9°+2°) =x  =((tan 9° +tan 2°)/(1−tan 9° tan 2°))=x  tan 2° =((x−tan 9°)/(1+xtan 9°))=y  tan (2×1°)=((2tan 1°)/(1−tan^2  1°))=y  y>0∧tan 1° >0 ⇒  tan 1° =(((√(y^2 +1))−1)/y)=  =(((√((1+tan^2  9°)(x^2 +1)))−(1+xtan 9°))/(x−tan 9°))       tan 18° =((√(5(5−2(√5))))/5)       tan 9° =tan ((18°)/2) =(((√(1+tan^2  18°))−1)/(tan 18°))=...       =(√(2(3+(√5))))−(√(5+2(√5)))    Result:  tan 1° =(((√((1+tan^2  9°)(x^2 +1)))−(1+xtan 9°))/(x−tan 9°))  with tan 9° =(√(2(3+(√5))))−(√(5+2(√5)))
tan11°=tan(9°+2°)=x=tan9°+tan2°1tan9°tan2°=xtan2°=xtan9°1+xtan9°=ytan(2×1°)=2tan1°1tan21°=yy>0tan1°>0tan1°=y2+11y==(1+tan29°)(x2+1)(1+xtan9°)xtan9°tan18°=5(525)5tan9°=tan18°2=1+tan218°1tan18°==2(3+5)5+25Result:tan1°=(1+tan29°)(x2+1)(1+xtan9°)xtan9°withtan9°=2(3+5)5+25
Answered by mr W last updated on 17/Mar/23
tan 11°=x  tan 22°=((2x)/(1−x^2 ))  tan 44°=((2(((2x)/(1−x^2 ))))/(1−(((2x)/(1−x^2 )))^2 ))=((4x(1−x^2 ))/(1−6x^2 +x^4 ))  tan 1°=tan (45°−44°)=((1−((4x(1−x^2 ))/(1−6x^2 +x^4 )))/(1+((4x(1−x^2 ))/(1−6x^2 +x^4 ))))     =((1−4x−6x^2 +4x^3 +x^4 )/(1+4x−6x^2 −4x^3 +x^4 )) ✓
tan11°=xtan22°=2x1x2tan44°=2(2x1x2)1(2x1x2)2=4x(1x2)16x2+x4tan1°=tan(45°44°)=14x(1x2)16x2+x41+4x(1x2)16x2+x4=14x6x2+4x3+x41+4x6x24x3+x4
Commented by Frix last updated on 17/Mar/23
Nice, I didn′t think of this!
Nice,Ididntthinkofthis!

Leave a Reply

Your email address will not be published. Required fields are marked *