Question Number 189482 by MATHEMATICSAM last updated on 17/Mar/23
$$\mathrm{If}\:\mathrm{tan}\:\mathrm{11}°\:=\:{x}\:\mathrm{then}\:\mathrm{tan}\:\mathrm{1}°\:=\:?\: \\ $$
Answered by Frix last updated on 17/Mar/23
$$\mathrm{tan}\:\mathrm{11}°\:=\mathrm{tan}\:\left(\mathrm{9}°+\mathrm{2}°\right)\:={x} \\ $$$$=\frac{\mathrm{tan}\:\mathrm{9}°\:+\mathrm{tan}\:\mathrm{2}°}{\mathrm{1}−\mathrm{tan}\:\mathrm{9}°\:\mathrm{tan}\:\mathrm{2}°}={x} \\ $$$$\mathrm{tan}\:\mathrm{2}°\:=\frac{{x}−\mathrm{tan}\:\mathrm{9}°}{\mathrm{1}+{x}\mathrm{tan}\:\mathrm{9}°}={y} \\ $$$$\mathrm{tan}\:\left(\mathrm{2}×\mathrm{1}°\right)=\frac{\mathrm{2tan}\:\mathrm{1}°}{\mathrm{1}−\mathrm{tan}^{\mathrm{2}} \:\mathrm{1}°}={y} \\ $$$${y}>\mathrm{0}\wedge\mathrm{tan}\:\mathrm{1}°\:>\mathrm{0}\:\Rightarrow \\ $$$$\mathrm{tan}\:\mathrm{1}°\:=\frac{\sqrt{{y}^{\mathrm{2}} +\mathrm{1}}−\mathrm{1}}{{y}}= \\ $$$$=\frac{\sqrt{\left(\mathrm{1}+\mathrm{tan}^{\mathrm{2}} \:\mathrm{9}°\right)\left({x}^{\mathrm{2}} +\mathrm{1}\right)}−\left(\mathrm{1}+{x}\mathrm{tan}\:\mathrm{9}°\right)}{{x}−\mathrm{tan}\:\mathrm{9}°} \\ $$$$\:\:\:\:\:\mathrm{tan}\:\mathrm{18}°\:=\frac{\sqrt{\mathrm{5}\left(\mathrm{5}−\mathrm{2}\sqrt{\mathrm{5}}\right)}}{\mathrm{5}} \\ $$$$\:\:\:\:\:\mathrm{tan}\:\mathrm{9}°\:=\mathrm{tan}\:\frac{\mathrm{18}°}{\mathrm{2}}\:=\frac{\sqrt{\mathrm{1}+\mathrm{tan}^{\mathrm{2}} \:\mathrm{18}°}−\mathrm{1}}{\mathrm{tan}\:\mathrm{18}°}=… \\ $$$$\:\:\:\:\:=\sqrt{\mathrm{2}\left(\mathrm{3}+\sqrt{\mathrm{5}}\right)}−\sqrt{\mathrm{5}+\mathrm{2}\sqrt{\mathrm{5}}} \\ $$$$ \\ $$$$\mathrm{Result}: \\ $$$$\mathrm{tan}\:\mathrm{1}°\:=\frac{\sqrt{\left(\mathrm{1}+\mathrm{tan}^{\mathrm{2}} \:\mathrm{9}°\right)\left({x}^{\mathrm{2}} +\mathrm{1}\right)}−\left(\mathrm{1}+{x}\mathrm{tan}\:\mathrm{9}°\right)}{{x}−\mathrm{tan}\:\mathrm{9}°} \\ $$$$\mathrm{with}\:\mathrm{tan}\:\mathrm{9}°\:=\sqrt{\mathrm{2}\left(\mathrm{3}+\sqrt{\mathrm{5}}\right)}−\sqrt{\mathrm{5}+\mathrm{2}\sqrt{\mathrm{5}}} \\ $$
Answered by mr W last updated on 17/Mar/23
$$\mathrm{tan}\:\mathrm{11}°={x} \\ $$$$\mathrm{tan}\:\mathrm{22}°=\frac{\mathrm{2}{x}}{\mathrm{1}−{x}^{\mathrm{2}} } \\ $$$$\mathrm{tan}\:\mathrm{44}°=\frac{\mathrm{2}\left(\frac{\mathrm{2}{x}}{\mathrm{1}−{x}^{\mathrm{2}} }\right)}{\mathrm{1}−\left(\frac{\mathrm{2}{x}}{\mathrm{1}−{x}^{\mathrm{2}} }\right)^{\mathrm{2}} }=\frac{\mathrm{4}{x}\left(\mathrm{1}−{x}^{\mathrm{2}} \right)}{\mathrm{1}−\mathrm{6}{x}^{\mathrm{2}} +{x}^{\mathrm{4}} } \\ $$$$\mathrm{tan}\:\mathrm{1}°=\mathrm{tan}\:\left(\mathrm{45}°−\mathrm{44}°\right)=\frac{\mathrm{1}−\frac{\mathrm{4}{x}\left(\mathrm{1}−{x}^{\mathrm{2}} \right)}{\mathrm{1}−\mathrm{6}{x}^{\mathrm{2}} +{x}^{\mathrm{4}} }}{\mathrm{1}+\frac{\mathrm{4}{x}\left(\mathrm{1}−{x}^{\mathrm{2}} \right)}{\mathrm{1}−\mathrm{6}{x}^{\mathrm{2}} +{x}^{\mathrm{4}} }} \\ $$$$\:\:\:=\frac{\mathrm{1}−\mathrm{4}{x}−\mathrm{6}{x}^{\mathrm{2}} +\mathrm{4}{x}^{\mathrm{3}} +{x}^{\mathrm{4}} }{\mathrm{1}+\mathrm{4}{x}−\mathrm{6}{x}^{\mathrm{2}} −\mathrm{4}{x}^{\mathrm{3}} +{x}^{\mathrm{4}} }\:\checkmark \\ $$
Commented by Frix last updated on 17/Mar/23
$$\mathrm{Nice},\:\mathrm{I}\:\mathrm{didn}'\mathrm{t}\:\mathrm{think}\:\mathrm{of}\:\mathrm{this}! \\ $$