Menu Close

if-tan-5-tan-4-1-find-3-




Question Number 61157 by Askash last updated on 29/May/19
if  tan 5θ + tan 4θ =1  find 3θ
iftan5θ+tan4θ=1find3θ
Commented by mr W last updated on 30/May/19
there are totally 9 values for tan 3θ.    one of them is θ=(π/4), and tan 3θ=−1.  with θ=(π/4)  tan 3θ=tan (((3π)/4))=−1  tan 5θ+tan 4θ=tan (((5π)/4))+tan (π)=1
therearetotally9valuesfortan3θ.oneofthemisθ=π4,andtan3θ=1.withθ=π4tan3θ=tan(3π4)=1tan5θ+tan4θ=tan(5π4)+tan(π)=1
Commented by Askash last updated on 29/May/19
tan 3θ
tan3θ
Commented by mr W last updated on 30/May/19
Answered by tanmay last updated on 30/May/19
  tan(α+β+γ+...)=((S_1 −S_3 +S_5 ...)/(1−S_2 +S_4 −S_6 +..))  tanθ=a  tan5θ=((5a−5C_3 a^3 +5C_5 a^5 )/(1−5C_2 a^2 +5C_4 a^4 ))=((5a−10a^3 +a^5 )/(1−10a^2 +5a^4 ))  tan4θ=((4a−4C_3 a^3 )/(1−4C_2 a^2 +4C_4 a^4 ))=((4a−4a^3 )/(1−6a^2 +a^4 ))  tan5θ+ta4θ=1  ((5a−10a^2 +a^5 )/(1−10a^2 +5a^4 ))+((4a−4a^3 )/(1−6a^2 +a^4 ))=1  wait...  anither approach...  here tan5θ+tan4θ=1  so θ=small  tan5θ+tan4θ≈5θ+4θ  9θ=1  θ=(1/9)  tan3θ≈3θ  =3×(1/9)=0.33  so tan3θ=0.33 (approax)
tan(α+β+γ+)=S1S3+S51S2+S4S6+..tanθ=atan5θ=5a5C3a3+5C5a515C2a2+5C4a4=5a10a3+a5110a2+5a4tan4θ=4a4C3a314C2a2+4C4a4=4a4a316a2+a4tan5θ+ta4θ=15a10a2+a5110a2+5a4+4a4a316a2+a4=1waitanitherapproachheretan5θ+tan4θ=1soθ=smalltan5θ+tan4θ5θ+4θ9θ=1θ=19tan3θ3θ=3×19=0.33sotan3θ=0.33(approax)

Leave a Reply

Your email address will not be published. Required fields are marked *