Question Number 60269 by Askash last updated on 19/May/19
$${if} \\ $$$${tan}\:{A}\:−\:{cot}\:{A}\:=\:\mathrm{0} \\ $$$${prove}\:{that} \\ $$$${sin}\:{A}\:+\:{cos}\:{A}=? \\ $$
Commented by mr W last updated on 19/May/19
$$\mathrm{sin}\:{A}+\mathrm{cos}\:{A}=\mathrm{0}\:{or}\:\sqrt{\mathrm{2}}\:{or}\:−\sqrt{\mathrm{2}} \\ $$
Commented by Askash last updated on 19/May/19
$${how}\:−\:\sqrt{\mathrm{2}\:\:} \\ $$$${is}\:{possible} \\ $$
Commented by mr W last updated on 19/May/19
$${e}.{g}. \\ $$$${A}=\pi+\frac{\pi}{\mathrm{4}} \\ $$$$\mathrm{tan}\:{A}=\mathrm{1} \\ $$$$\mathrm{cot}\:{A}=\mathrm{1} \\ $$$$\Rightarrow\mathrm{tan}\:{A}−\mathrm{cot}\:{A}=\mathrm{0} \\ $$$$\mathrm{sin}\:{A}=−\frac{\sqrt{\mathrm{2}}}{\mathrm{2}} \\ $$$$\mathrm{cos}\:{A}=−\frac{\sqrt{\mathrm{2}}}{\mathrm{2}} \\ $$$$\Rightarrow\mathrm{sin}\:{A}+\mathrm{cos}\:{A}=−\sqrt{\mathrm{2}} \\ $$
Answered by Kunal12588 last updated on 19/May/19
$$\frac{{sin}\:{A}}{{cos}\:{A}}−\frac{{cos}\:{A}}{{sin}\:{A}}=\mathrm{0} \\ $$$$\Rightarrow\frac{{sin}^{\mathrm{2}} \:{A}\:−\:{cos}^{\mathrm{2}} \:{A}}{{sinA}\:{cos}\:{A}}=\mathrm{0} \\ $$$$\Rightarrow\left({sinA}+{cosA}\right)\left({sinA}−{cosA}\right)=\mathrm{0} \\ $$$$\Rightarrow{sinA}+{cosA}=\mathrm{0} \\ $$
Commented by Askash last updated on 19/May/19
$${ANOTHER}\:{WAY} \\ $$$${sin}^{\mathrm{2}\:} {A}\:−{cos}^{\mathrm{2}} {A}=\mathrm{0} \\ $$$$\mathrm{1}−{cos}^{\mathrm{2}} {A}−{cos}^{\mathrm{2}} {A}=\mathrm{0} \\ $$$$\mathrm{1}−\mathrm{2}{cos}^{\mathrm{2}} {A}=\mathrm{0} \\ $$$$\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}={cosA} \\ $$$${cos}\mathrm{45}°={cosA} \\ $$$${A}=\mathrm{45}° \\ $$$$ \\ $$$${sin}\mathrm{45}°+{cos}\mathrm{45}° \\ $$$$=\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}+\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}} \\ $$$$=\frac{\mathrm{2}}{\:\sqrt{\mathrm{2}}} \\ $$$$=\frac{\mathrm{2}}{\:\sqrt{\mathrm{2}}}×\frac{\sqrt{\mathrm{2}}}{\:\sqrt{\mathrm{2}}} \\ $$$$=\sqrt{\mathrm{2}} \\ $$$$ \\ $$$${IS}\:{IT}\:{RIGHT}\:{OR}\:{WRONG}?{WHY}? \\ $$$$ \\ $$
Commented by Kunal12588 last updated on 19/May/19
$${it}'{s}\:{actually}\:{correct} \\ $$$${but}\:{it}\:{has}\:{two}\:{answers} \\ $$$$\mathrm{1}−\mathrm{2}{cos}^{\mathrm{2}} {A}=\mathrm{0} \\ $$$$\Rightarrow{cosA}=\pm\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}} \\ $$$${you}\:{solved}\:{using}\:{case}\:\mathrm{1}\rightarrow\:{cosA}=\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}} \\ $$$${now}\:{I}\:{am}\:{taking}\:{case}\:\mathrm{2}\:\rightarrow\:\:{cosA}=−\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}} \\ $$$$\Rightarrow{cosA}=−{cos}\left(\mathrm{45}°\right) \\ $$$$\Rightarrow{cosA}={cos}\left(\mathrm{180}°−\mathrm{45}°\right)={cos}\left(\mathrm{135}°\right) \\ $$$$\Rightarrow{A}=\mathrm{135}°\:\left({taking}\:{only}\:{priciple}\:{value}\right) \\ $$$${sin}\left(\mathrm{135}°\right)−{cos}\left(\mathrm{135}°\right)=\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}−\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}=\mathrm{0} \\ $$$${in}\:{my}\:{answer}\:{i}\:{had}\:{not}\:{taken}\: \\ $$$$\left({sinA}−{cosA}\right)=\mathrm{0} \\ $$$$\Rightarrow{sinA}+{cosA}=\sqrt{\mathrm{2}} \\ $$$${yes}\:−\sqrt{\mathrm{2}}\:{is}\:{also}\:{possible} \\ $$$${cos}\:{A}\:=\:−{cos}\:\left(\mathrm{45}°\right) \\ $$$$\Rightarrow{cos}\:{A}=\:{cos}\left(\mathrm{180}°+\mathrm{45}°\right)={cos}\left(\mathrm{225}°\right) \\ $$$$\Rightarrow{A}=\mathrm{225}°\:\:\:\left({its}\:{not}\:{principle}\:{value}\right) \\ $$$${sin}\left(\mathrm{225}°\right)+{cos}\left(\mathrm{225}°\right)=−\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}−\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}=−\sqrt{\mathrm{2}} \\ $$
Commented by mr W last updated on 19/May/19
$${what}\:{about}\:{A}=\mathrm{225}°\:? \\ $$
Commented by Kunal12588 last updated on 19/May/19
$${thank}\:{you}\:{sir} \\ $$
Answered by ajfour last updated on 19/May/19
$$\frac{\mathrm{p}}{\mathrm{b}}=\frac{\mathrm{b}}{\mathrm{p}}\:\:\:\Rightarrow\:\:\mathrm{p}=\mathrm{b}=\pm\frac{\mathrm{h}}{\:\sqrt{\mathrm{2}}}\:\:\:\:\&\:\mathrm{p}=−\mathrm{b}=\pm\frac{\mathrm{h}}{\:\sqrt{\mathrm{2}}} \\ $$$$\:\mathrm{sin}\:{A}+\mathrm{cos}\:{A}=\:\frac{\mathrm{p}+\mathrm{b}}{\mathrm{h}}\:=\:\pm\sqrt{\mathrm{2}}\:,\:\mathrm{0}\:. \\ $$
Commented by Kunal12588 last updated on 19/May/19
$${great}\:{i}\:{used}\:{this}\:{method}\:{to}\:{prove}\:{the}\: \\ $$$${trig}\:{identities}\:{in}\:{first}\:{year}\:{but}\:{teachers} \\ $$$${always}\:{deduct}\:{my}\:{marks}. \\ $$
Commented by Askash last updated on 20/May/19
$${Same}\:{with}\:{me}.\: \\ $$$${Some}\:{Teachers}\:{only}\:{check}\:{their} \\ $$$${solutions}\:{what}\:{they}\:{had}\:{taught}. \\ $$
Answered by malwaan last updated on 22/May/19
$${tan}\:{A}−{cot}\:{A}=\mathrm{0} \\ $$$$\Rightarrow\frac{{sin}\:{A}}{{cos}\:{A}}−\frac{{cos}\:{A}}{{sin}\:{A}}=\mathrm{0} \\ $$$$\frac{{sin}^{\mathrm{2}} \:{A}−{cos}^{\mathrm{2}} \:{A}}{{cos}\:{A}×{sin}\:{A}}=\mathrm{0} \\ $$$$\left({sin}\:{A}+{cos}\:{A}\right)\left({sinA}−{cosA}\right)=\mathrm{0} \\ $$$$\mathrm{1}:\:{sinA}+{cosA}=\mathrm{0} \\ $$$$\mathrm{2}:\:{sinA}−{cosA}=\mathrm{0} \\ $$$$\Rightarrow{A}=\frac{\pi}{\mathrm{4}}\Rightarrow{sinA}+{cosA}=\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}+\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}=\frac{\mathrm{2}}{\:\sqrt{\mathrm{2}}}=\sqrt{\mathrm{2}} \\ $$$$\mathrm{OR}\:{A}=\pi+\frac{\pi}{\mathrm{4}}=\frac{\mathrm{5}\pi}{\mathrm{4}} \\ $$$$\Rightarrow{sinA}+{cosA}=−\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}−\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}=−\frac{\mathrm{2}}{\:\sqrt{\mathrm{2}}}=−\sqrt{\mathrm{2}} \\ $$$$\therefore\:{sinA}+{cosA}=\left\{\mathrm{0}\:\boldsymbol{{or}}\:\sqrt{\mathrm{2}}\:\boldsymbol{{or}}\:−\sqrt{\mathrm{2}}\right\} \\ $$