Menu Close

if-tan-A-cot-A-0-prove-that-sin-A-cos-A-




Question Number 60269 by Askash last updated on 19/May/19
if  tan A − cot A = 0  prove that  sin A + cos A=?
iftanAcotA=0provethatsinA+cosA=?
Commented by mr W last updated on 19/May/19
sin A+cos A=0 or (√2) or −(√2)
sinA+cosA=0or2or2
Commented by Askash last updated on 19/May/19
how − (√(2  ))  is possible
how2ispossible
Commented by mr W last updated on 19/May/19
e.g.  A=π+(π/4)  tan A=1  cot A=1  ⇒tan A−cot A=0  sin A=−((√2)/2)  cos A=−((√2)/2)  ⇒sin A+cos A=−(√2)
e.g.A=π+π4tanA=1cotA=1tanAcotA=0sinA=22cosA=22sinA+cosA=2
Answered by Kunal12588 last updated on 19/May/19
((sin A)/(cos A))−((cos A)/(sin A))=0  ⇒((sin^2  A − cos^2  A)/(sinA cos A))=0  ⇒(sinA+cosA)(sinA−cosA)=0  ⇒sinA+cosA=0
sinAcosAcosAsinA=0sin2Acos2AsinAcosA=0(sinA+cosA)(sinAcosA)=0sinA+cosA=0
Commented by Askash last updated on 19/May/19
ANOTHER WAY  sin^(2 ) A −cos^2 A=0  1−cos^2 A−cos^2 A=0  1−2cos^2 A=0  (1/( (√2)))=cosA  cos45°=cosA  A=45°    sin45°+cos45°  =(1/( (√2)))+(1/( (√2)))  =(2/( (√2)))  =(2/( (√2)))×((√2)/( (√2)))  =(√2)    IS IT RIGHT OR WRONG?WHY?
ANOTHERWAYsin2Acos2A=01cos2Acos2A=012cos2A=012=cosAcos45°=cosAA=45°sin45°+cos45°=12+12=22=22×22=2ISITRIGHTORWRONG?WHY?
Commented by Kunal12588 last updated on 19/May/19
it′s actually correct  but it has two answers  1−2cos^2 A=0  ⇒cosA=±(1/( (√2)))  you solved using case 1→ cosA=(1/( (√2)))  now I am taking case 2 →  cosA=−(1/( (√2)))  ⇒cosA=−cos(45°)  ⇒cosA=cos(180°−45°)=cos(135°)  ⇒A=135° (taking only priciple value)  sin(135°)−cos(135°)=(1/( (√2)))−(1/( (√2)))=0  in my answer i had not taken   (sinA−cosA)=0  ⇒sinA+cosA=(√2)  yes −(√2) is also possible  cos A = −cos (45°)  ⇒cos A= cos(180°+45°)=cos(225°)  ⇒A=225°   (its not principle value)  sin(225°)+cos(225°)=−(1/( (√2)))−(1/( (√2)))=−(√2)
itsactuallycorrectbutithastwoanswers12cos2A=0cosA=±12yousolvedusingcase1cosA=12nowIamtakingcase2cosA=12cosA=cos(45°)cosA=cos(180°45°)=cos(135°)A=135°(takingonlypriciplevalue)sin(135°)cos(135°)=1212=0inmyanswerihadnottaken(sinAcosA)=0sinA+cosA=2yes2isalsopossiblecosA=cos(45°)cosA=cos(180°+45°)=cos(225°)A=225°(itsnotprinciplevalue)sin(225°)+cos(225°)=1212=2
Commented by mr W last updated on 19/May/19
what about A=225° ?
whataboutA=225°?
Commented by Kunal12588 last updated on 19/May/19
thank you sir
thankyousir
Answered by ajfour last updated on 19/May/19
(p/b)=(b/p)   ⇒  p=b=±(h/( (√2)))    & p=−b=±(h/( (√2)))   sin A+cos A= ((p+b)/h) = ±(√2) , 0 .
pb=bpp=b=±h2&p=b=±h2sinA+cosA=p+bh=±2,0.
Commented by Kunal12588 last updated on 19/May/19
great i used this method to prove the   trig identities in first year but teachers  always deduct my marks.
greatiusedthismethodtoprovethetrigidentitiesinfirstyearbutteachersalwaysdeductmymarks.
Commented by Askash last updated on 20/May/19
Same with me.   Some Teachers only check their  solutions what they had taught.
Samewithme.SomeTeachersonlychecktheirsolutionswhattheyhadtaught.
Answered by malwaan last updated on 22/May/19
tan A−cot A=0  ⇒((sin A)/(cos A))−((cos A)/(sin A))=0  ((sin^2  A−cos^2  A)/(cos A×sin A))=0  (sin A+cos A)(sinA−cosA)=0  1: sinA+cosA=0  2: sinA−cosA=0  ⇒A=(π/4)⇒sinA+cosA=(1/( (√2)))+(1/( (√2)))=(2/( (√2)))=(√2)  OR A=π+(π/4)=((5π)/4)  ⇒sinA+cosA=−(1/( (√2)))−(1/( (√2)))=−(2/( (√2)))=−(√2)  ∴ sinA+cosA={0 or (√2) or −(√2)}
tanAcotA=0sinAcosAcosAsinA=0sin2Acos2AcosA×sinA=0(sinA+cosA)(sinAcosA)=01:sinA+cosA=02:sinAcosA=0A=π4sinA+cosA=12+12=22=2ORA=π+π4=5π4sinA+cosA=1212=22=2sinA+cosA={0\boldsymbolor2\boldsymbolor2}

Leave a Reply

Your email address will not be published. Required fields are marked *