Menu Close

If-tan-i-cos-isin-prove-that-n-2-4-and-1-2-log-tan-4-2-




Question Number 168118 by Mastermind last updated on 03/Apr/22
If tan(θ+iφ)=cosα+isinα,   prove that : θ=((nΠ)/2)+(Π/4) and φ=(1/2)log tan((Π/4)+(α/2))
Iftan(θ+iϕ)=cosα+isinα,provethat:θ=nΠ2+Π4andϕ=12logtan(Π4+α2)
Answered by mathsmine last updated on 05/Apr/22
tan(θ+i∅)=((tan(θ)+tan(i∅))/(1−tan(θ)tan(i∅)))  tan(ix)=ith(x)  ⇔((tan(θ)+ith(∅))/(1−itan(θ)th(∅)))=cos(a)+isin(a)  ⇔cos(a)+sin(a)tan(θ)th(∅)+i(sin(a)−tan(θ)th(∅)cos(a))  =tan(θ)+ith(∅)  tan(θ)=((cos(a))/(1−sin(a)th(∅)))  th(∅)=((sin(a))/(1+tg(θ)cos(a)))  ⇒tg(θ)=cos(a)(1+tg(θ)cos(a)).(1/((1+tg(θ)cos(a)−sin^2 (a)))  =((1+tg(θ)cos(a))/(tg(θ)+cos(a)))⇔  tg^2 (θ)=1⇒ tg(θ)=+_− 1⇒  θ=(π/4)+n(π/2)  th(∅)=((sin(a))/(1+_− cos(a))),  ((sin(a))/(1+cos(a)))=tg((a/2)).....E  ((sin(a))/(1−cos(a)))=cot((a/2))  th(x)=a⇒x=argth(a)=(1/2)ln(((a+1)/(1−a)))  E⇒∅=(1/2)ln(((1+tg((a/2)))/(1−tg((a/2))))))=(1/2)ln(tg((π/4)+(a/2)))  ≤((1+tg(x))/(1−tg(x)))=tg(x+(π/4))≥  So θ=((nπ)/2)+(π/4)  ∅=(1/2)ln(tg((a/2)+(π/4)))
tan(θ+i)=tan(θ)+tan(i)1tan(θ)tan(i)tan(ix)=ith(x)tan(θ)+ith()1itan(θ)th()=cos(a)+isin(a)cos(a)+sin(a)tan(θ)th()+i(sin(a)tan(θ)th()cos(a))=tan(θ)+ith()tan(θ)=cos(a)1sin(a)th()th()=sin(a)1+tg(θ)cos(a)tg(θ)=cos(a)(1+tg(θ)cos(a)).1(1+tg(θ)cos(a)sin2(a)=1+tg(θ)cos(a)tg(θ)+cos(a)tg2(θ)=1tg(θ)=+1θ=π4+nπ2th()=sin(a)1+cos(a),sin(a)1+cos(a)=tg(a2)..Esin(a)1cos(a)=cot(a2)th(x)=ax=argth(a)=12ln(a+11a)E=12ln(1+tg(a2)1tg(a2)))=12ln(tg(π4+a2))1+tg(x)1tg(x)=tg(x+π4)Soθ=nπ2+π4=12ln(tg(a2+π4))
Commented by Mastermind last updated on 05/Apr/22
Thanks man, you did a great Job!    Could you please drop your Whatsapp number?
Thanksman,youdidagreatJob!CouldyoupleasedropyourWhatsappnumber?

Leave a Reply

Your email address will not be published. Required fields are marked *