Menu Close

if-tan-r-s-and-sin-s-r-show-that-cos-r-2-s-




Question Number 33466 by mondodotto@gmail.com last updated on 17/Apr/18
 if tan𝛃=(r/( (√s))) and sin𝛃=((√s)/r)   show that cos𝛃=(√(r^2 +s))
iftanβ=rsandsinβ=srshowthatcosβ=r2+s
Commented by MJS last updated on 17/Apr/18
cos β=(√(1−sin^2  β))=((√(r^2 −s))/(∣r∣))  (√(r^2 +s))=((√(r^2 −s))/(∣r∣)) ⇒ s=r^2 ((1−r^2 )/(1+r^2 ))    cos β=((sin β)/(tan β))  (√(r^2 +s))=(s/r^2 ) ⇒ s=(r^3 /2)(r±(√(4+r^2 )))    r^2 ((1−r^2 )/(1+r^2 ))=(r^3 /2)(r±(√(4+r^2 ))) ⇒   ⇒ r=(√(−2+(√5))); s=(7/2)−(3/2)(√5)  β≈51.83°  it′s only true in this singular case
cosβ=1sin2β=r2srr2+s=r2srs=r21r21+r2cosβ=sinβtanβr2+s=sr2s=r32(r±4+r2)r21r21+r2=r32(r±4+r2)r=2+5;s=72325β51.83°itsonlytrueinthissingularcase
Commented by mondodotto@gmail.com last updated on 17/Apr/18
thanx for your help sir
thanxforyourhelpsir
Answered by Rasheed.Sindhi last updated on 17/Apr/18
tan𝛃=((sin𝛃)/(cos𝛃))    (r/( (√s)))=(((√s)/r)/(cos𝛃))    cos𝛃=(((√s)/r)/(r/( (√s))))=((√s)/r)×((√s)/r)=(s/r^2 )≠(√(r^2 +s)) in general.
tanβ=sinβcosβrs=srcosβcosβ=srrs=sr×sr=sr2r2+singeneral.

Leave a Reply

Your email address will not be published. Required fields are marked *