Question Number 83319 by jagoll last updated on 29/Feb/20
$$\mathrm{if}\:\mathrm{tan}\:\beta\:=\:\frac{\mathrm{tan}\:\alpha\:+\:\mathrm{tan}\:\gamma}{\mathrm{1}+\mathrm{tan}\:\alpha\mathrm{tan}\:\gamma} \\ $$$$\mathrm{show}\:\mathrm{that}\:\mathrm{sin}\:\mathrm{2}\beta\:=\:\frac{\mathrm{sin}\:\mathrm{2}\alpha+\mathrm{sin}\:\mathrm{2}\gamma}{\mathrm{1}+\mathrm{sin}\:\mathrm{2}\alpha\mathrm{sin}\:\mathrm{2}\gamma} \\ $$
Answered by mind is power last updated on 01/Mar/20
$${sin}\left(\mathrm{2}\beta\right)=\frac{\mathrm{2}{tg}\left(\beta\right)}{\mathrm{1}+{tg}^{\mathrm{2}} \left(\beta\right)} \\ $$$$\frac{{tan}\left({a}\right)+{tan}\left(\gamma\right)}{\mathrm{1}+{tan}\left({a}\right){tan}\left(\gamma\right)}=\frac{{sin}\left({a}+\gamma\right)}{{cos}\left({a}−\gamma\right)} \\ $$$${sin}\left(\mathrm{2}\beta\right)=\mathrm{2}\frac{\frac{{sin}\left({a}+\gamma\right)}{{cos}\left({a}−\gamma\right)}}{\mathrm{1}+\frac{{sin}^{\mathrm{2}} \left({a}+\gamma\right)}{{cos}^{\mathrm{2}} \left({a}−\gamma\right)}} \\ $$$$=\frac{\mathrm{2}{sin}\left({a}+\gamma\right){cos}\left({a}−\gamma\right)}{{cos}^{\mathrm{2}} \left({a}−\gamma\right)+{sin}^{\mathrm{2}} \left({a}+\gamma\right)} \\ $$$${cos}^{\mathrm{2}} \left({a}−\gamma\right)+{sin}^{\mathrm{2}} \left({a}+\gamma\right)={cos}^{\mathrm{2}} \left({a}\right){cos}^{\mathrm{2}} \left(\gamma\right)+{sin}^{\mathrm{2}} \left({a}\right){sin}^{\mathrm{2}} \left(\gamma\right) \\ $$$$+{sin}^{\mathrm{2}} \left({a}\right){cos}^{\mathrm{2}} \left(\gamma\right)+{sin}^{\mathrm{2}} \left(\gamma\right){cos}^{\mathrm{2}} \left({a}\right)+\mathrm{4}{sin}\left({a}\right){cos}\left({a}\right){sin}\left(\gamma\right){cos}\left(\gamma\right) \\ $$$$={cos}^{\mathrm{2}} \left(\gamma\right)\left({sin}^{\mathrm{2}} \left({a}\right)+{cos}^{\mathrm{2}} \left({a}\right)\right)+{sin}^{\mathrm{2}} \left(\gamma\right)\left({sin}^{\mathrm{2}} \left({a}\right)+{cos}^{\mathrm{2}} \left({a}\right)\right) \\ $$$$+{sin}\left(\mathrm{2}{a}\right){sin}\left(\mathrm{2}\gamma\right) \\ $$$$=\mathrm{1}+{sin}\left(\mathrm{2}\gamma\right){cos}\left(\mathrm{2}{a}\right) \\ $$$$\mathrm{2}{sin}\left({a}+\gamma\right){cos}\left({a}−\gamma\right)={sin}\left(\mathrm{2}\gamma\right)+{sin}\left(\mathrm{2}{a}\right) \\ $$$${i}\:{used}\:\:,\mathrm{2}{sin}\left({a}\right){cos}\left({b}\right)={sin}\left({a}+{b}\right)+{sin}\left({a}−{b}\right) \\ $$$${we}\:{get}\:\frac{{sin}\left(\mathrm{2}\gamma\right)+{sin}\left(\mathrm{2}{a}\right)}{\mathrm{1}+{sin}\left(\mathrm{2}{a}\right){sin}\left(\mathrm{2}\gamma\right)} \\ $$$$ \\ $$
Commented by peter frank last updated on 01/Mar/20
$${thank}\:{you} \\ $$
Commented by jagoll last updated on 01/Mar/20
$$\mathrm{thank}\:\mathrm{you}\:\mathrm{sir} \\ $$
Commented by mind is power last updated on 01/Mar/20
$${withe}\:{Pleasur} \\ $$