Menu Close

if-tan-x-iy-a-ib-determine-x-and-y-interms-of-a-and-b-




Question Number 96377 by mathmax by abdo last updated on 01/Jun/20
if tan(x+iy)=a+ib   determine x and y interms of a and b
iftan(x+iy)=a+ibdeterminexandyintermsofaandb
Answered by mathmax by abdo last updated on 02/Jun/20
tan(x+iy) =a+ib ⇒x+iy =arctan(a+ib) we know  arctan(z) =(1/(2i))ln(((1+iz)/(1−iz))) ⇒arctan(a+ib) =(1/(2i))ln(((1+i(a+ib))/(1−i(a+ib))))  =(1/(2i))ln(((1−b+ia)/(1+b−ia)))  we have 1−b+ia =(√((1−b)^2  +a^2 ))e^(iarctan((a/(1−b))))  ⇒  ln(1−b+ia) =(1/2)ln{(1−b)^2  +a^2 } +iarctan((a/(1−b))) also  1+b−ia =(√((1+b)^2  +a^2 ))e^(−iarctan((a/(1+b))))  ⇒ln(1+b−ia) =(1/2)ln{(1+b)^2  +a^2 }  −iarctan((a/(1+b))) ⇒2i arctan(a+ib)  (1/2)ln{(1−b)^2  +a^2 }+iarctan((a/(1−b)))−(1/2)ln{(1+b)^2  +a^2 }+iarctan((a/(1+b)))  =(1/2)ln((((1−b)^2  +a^2 )/((1+b)^2  +a^2 ))) +i{ arctan((a/(1−b)))+arctan((a/(1+b))) ⇒  arctan(a+ib) =(1/(4i))ln((((1−b)^2  +a^2 )/((1+b)^2  +a^2 )))+(1/2){arctan((a/(1−b)))+arctan((a/(1+b)))}=x+iy  ⇒ { ((x =(1/2){ arctan((a/(1−b))) +arctan((a/(1+b)))})),((y =(1/4)ln(((a^2  +b^2  +2b+1)/(a^2  +b^2 −2b+1))))) :}
tan(x+iy)=a+ibx+iy=arctan(a+ib)weknowarctan(z)=12iln(1+iz1iz)arctan(a+ib)=12iln(1+i(a+ib)1i(a+ib))=12iln(1b+ia1+bia)wehave1b+ia=(1b)2+a2eiarctan(a1b)ln(1b+ia)=12ln{(1b)2+a2}+iarctan(a1b)also1+bia=(1+b)2+a2eiarctan(a1+b)ln(1+bia)=12ln{(1+b)2+a2}iarctan(a1+b)2iarctan(a+ib)12ln{(1b)2+a2}+iarctan(a1b)12ln{(1+b)2+a2}+iarctan(a1+b)=12ln((1b)2+a2(1+b)2+a2)+i{arctan(a1b)+arctan(a1+b)arctan(a+ib)=14iln((1b)2+a2(1+b)2+a2)+12{arctan(a1b)+arctan(a1+b)}=x+iy{x=12{arctan(a1b)+arctan(a1+b)}y=14ln(a2+b2+2b+1a2+b22b+1)
Commented by Ar Brandon last updated on 02/Jun/20
Vous avez des choses tellement intéressantes monsieur Mathmax.��

Leave a Reply

Your email address will not be published. Required fields are marked *