Question Number 81963 by jagoll last updated on 17/Feb/20
$${if}\:\mathrm{tan}\:\left({x}\right)+\mathrm{sec}\:\left({x}\right)\:=\:\frac{\mathrm{7}}{\mathrm{8}} \\ $$$${find}\:\mathrm{cot}\:\left({x}\right)+\mathrm{cosec}\:\left({x}\right)\:=\: \\ $$
Commented by john santu last updated on 17/Feb/20
$${let}\:\mathrm{cot}\:\left({x}\right)+\mathrm{cosec}\:\left({x}\right)\:=\:{t} \\ $$$$\left({i}\right)\:\left\{\mathrm{tan}\:\left({x}\right)+\mathrm{sec}\:\left({x}\right)\right\}×\left\{\mathrm{cot}\:\left({x}\right)+\mathrm{cosec}\:\left({x}\right)\right\}=\:\frac{\mathrm{7}{t}}{\mathrm{8}} \\ $$$$\mathrm{1}+\:\frac{\mathrm{1}}{\mathrm{cos}\:\left({x}\right)}+\frac{\mathrm{1}}{\mathrm{sin}\:\left({x}\right)}+\frac{\mathrm{1}}{\mathrm{sin}\:\left({x}\right)\mathrm{cos}\:\left({x}\right)}\:=\:\frac{\mathrm{7}{t}}{\mathrm{8}} \\ $$$$\left({ii}\right)\:−\frac{\mathrm{sin}\:\left({x}\right)}{\mathrm{cos}\:\left({x}\right)}−\frac{\mathrm{1}}{\mathrm{cos}\:\left({x}\right)}\:=\:−\frac{\mathrm{7}}{\mathrm{8}} \\ $$$$\left({iii}\right)\:−\frac{\mathrm{cos}\:\left({x}\right)}{\mathrm{sin}\:\left({x}\right)}−\frac{\mathrm{1}}{\mathrm{sin}\:\left({x}\right)}\:=\:−{t} \\ $$$$\left({i}\right)+\left({ii}\right)+\left({iii}\right) \\ $$$$\Rightarrow\:\mathrm{1}\:=\:−\frac{{t}}{\mathrm{8}}−\frac{\mathrm{7}}{\mathrm{8}} \\ $$$$\Rightarrow−\mathrm{8}\:=\:{t}+\mathrm{7}\:\Rightarrow\:{t}\:=\:−\mathrm{15}\: \\ $$$$\therefore\:\mathrm{cot}\:\left({x}\right)+\mathrm{cosec}\:\left({x}\right)\:=\:−\mathrm{15}\: \\ $$
Commented by jagoll last updated on 17/Feb/20
$${thank}\:{you}\:{mister} \\ $$
Answered by Kunal12588 last updated on 17/Feb/20
$${let}\:\:{tan}\:{x}\:=\:{t} \\ $$$${sec}\:{x}\:=\:\sqrt{\mathrm{1}+{t}^{\mathrm{2}} } \\ $$$${cot}\:{x}\:=\:\frac{\mathrm{1}}{{t}} \\ $$$${csc}\:{x}\:=\:\frac{\sqrt{\mathrm{1}+{t}^{\mathrm{2}} }}{{t}} \\ $$$${t}+\sqrt{\mathrm{1}+{t}^{\mathrm{2}} }=\frac{\mathrm{7}}{\mathrm{8}} \\ $$$$\Rightarrow\mathrm{1}+{t}^{\mathrm{2}} =\frac{\mathrm{49}}{\mathrm{64}}+{t}^{\mathrm{2}} −\frac{\mathrm{7}}{\mathrm{4}}{t} \\ $$$$\Rightarrow\frac{\mathrm{7}}{\mathrm{4}}{t}=\frac{\mathrm{49}}{\mathrm{64}}−\mathrm{1}=\frac{−\mathrm{15}}{\mathrm{64}} \\ $$$$\Rightarrow{t}=\frac{−\mathrm{15}}{\mathrm{112}} \\ $$$$\sqrt{\mathrm{1}+{t}^{\mathrm{2}} }=\frac{\mathrm{7}}{\mathrm{8}}−{t}=\frac{\mathrm{7}}{\mathrm{8}}+\frac{\mathrm{15}}{\mathrm{112}}=\frac{\mathrm{98}+\mathrm{15}}{\mathrm{112}}=\frac{\mathrm{113}}{\mathrm{112}} \\ $$$$\frac{\mathrm{1}}{{t}}+\frac{\sqrt{\mathrm{1}+{t}^{\mathrm{2}} }}{{t}}=\frac{\mathrm{1}+\sqrt{\mathrm{1}+{t}^{\mathrm{2}} }}{{t}}=\frac{\mathrm{1}+\frac{\mathrm{113}}{\mathrm{112}}}{\frac{−\mathrm{15}}{\mathrm{112}}}=−\frac{\mathrm{225}}{\mathrm{15}}=−\mathrm{15} \\ $$$${cot}\:{x}\:+\:{csc}\:{x}\:=\:−\mathrm{15} \\ $$$${I}\:{think}\:{there}\:{should}\:{be}\:{one}\:{more}\:{value}\:{when} \\ $$$${x}\:{is}\:{in}\:{IV}\:{quadrant} \\ $$