Menu Close

if-tan-x-sec-x-7-8-find-cot-x-cosec-x-




Question Number 81963 by jagoll last updated on 17/Feb/20
if tan (x)+sec (x) = (7/8)  find cot (x)+cosec (x) =
iftan(x)+sec(x)=78findcot(x)+cosec(x)=
Commented by john santu last updated on 17/Feb/20
let cot (x)+cosec (x) = t  (i) {tan (x)+sec (x)}×{cot (x)+cosec (x)}= ((7t)/8)  1+ (1/(cos (x)))+(1/(sin (x)))+(1/(sin (x)cos (x))) = ((7t)/8)  (ii) −((sin (x))/(cos (x)))−(1/(cos (x))) = −(7/8)  (iii) −((cos (x))/(sin (x)))−(1/(sin (x))) = −t  (i)+(ii)+(iii)  ⇒ 1 = −(t/8)−(7/8)  ⇒−8 = t+7 ⇒ t = −15   ∴ cot (x)+cosec (x) = −15
letcot(x)+cosec(x)=t(i){tan(x)+sec(x)}×{cot(x)+cosec(x)}=7t81+1cos(x)+1sin(x)+1sin(x)cos(x)=7t8(ii)sin(x)cos(x)1cos(x)=78(iii)cos(x)sin(x)1sin(x)=t(i)+(ii)+(iii)1=t8788=t+7t=15cot(x)+cosec(x)=15
Commented by jagoll last updated on 17/Feb/20
thank you mister
thankyoumister
Answered by Kunal12588 last updated on 17/Feb/20
let  tan x = t  sec x = (√(1+t^2 ))  cot x = (1/t)  csc x = ((√(1+t^2 ))/t)  t+(√(1+t^2 ))=(7/8)  ⇒1+t^2 =((49)/(64))+t^2 −(7/4)t  ⇒(7/4)t=((49)/(64))−1=((−15)/(64))  ⇒t=((−15)/(112))  (√(1+t^2 ))=(7/8)−t=(7/8)+((15)/(112))=((98+15)/(112))=((113)/(112))  (1/t)+((√(1+t^2 ))/t)=((1+(√(1+t^2 )))/t)=((1+((113)/(112)))/((−15)/(112)))=−((225)/(15))=−15  cot x + csc x = −15  I think there should be one more value when  x is in IV quadrant
lettanx=tsecx=1+t2cotx=1tcscx=1+t2tt+1+t2=781+t2=4964+t274t74t=49641=1564t=151121+t2=78t=78+15112=98+15112=1131121t+1+t2t=1+1+t2t=1+11311215112=22515=15cotx+cscx=15IthinkthereshouldbeonemorevaluewhenxisinIVquadrant

Leave a Reply

Your email address will not be published. Required fields are marked *