Menu Close

If-tan-x-tan-pi-3-x-tan-2pi-3-x-3-a-tan-x-1-b-tan-2x-1-c-tan-3x-1-d-None-of-above-




Question Number 16681 by rish@bh last updated on 25/Jun/17
If  tan x+tan ((π/3)+x)+tan (((2π)/3)+x)=3  a) tan x=1  b) tan 2x=1  c) tan 3x=1  d) None of above
Iftanx+tan(π3+x)+tan(2π3+x)=3a)tanx=1b)tan2x=1c)tan3x=1d)Noneofabove
Answered by b.e.h.i.8.3.4.1.7@gmail.com last updated on 25/Jun/17
(((√3)+tgx)/(1−(√3)tgx))+((−(√3)+tgx)/(1+(√3)tgx))=3−tgx⇒  (((√3)+3tgx+tgx+(√3)tg^2 x−(√3)+tgx+3tgx−(√3)tg^2 x)/(1−3tg^2 x))=3−tgx  ⇒((8tgx)/(1−3tg^2 x))=3−tgx⇒8tgx=3−tgx−9tg^2 x+3tg^3 x  ⇒tg^3 x−3tg^2 x−3tgx+1=0  ⇒(tgx+1)(tg^2 x−4tgx+1)=0  ⇒tgx=−1,tgx=((4±(√(16−4)))/2)=2±(√3) .■  tgx=−1⇒tg2x=∞,tg3x=1  tgx=2−(√3)⇒x= { ((π/(12))),((tg2x=((√3)/3),tg3x=1)) :}  tgx=2+(√3)⇒x= { (((5π)/(12))),((tg2x=−((√3)/3),tg3x=1)) :}  so in all cases we have: tg3x=1⇒answer(c).  way:2  x+(x+(π/3))+(x+((2π)/3))=π+3x  ⇒tgx+tg(x+(π/3))+tg(x+((2π)/3))=tgx.tg(x+(π/3))tg(x+((2π)/3))  tg(x+((2π)/3))=−tg(π−(((2π)/3)+x))=−tg((π/3)−x)=  =tg(x−(π/3))  tg3x=tgx.tg(x+(π/3))tg(x−(π/3))  ⇒3tg3x=3⇒tg3x=1 ⇒answer (c).
3+tgx13tgx+3+tgx1+3tgx=3tgx3+3tgx+tgx+3tg2x3+tgx+3tgx3tg2x13tg2x=3tgx8tgx13tg2x=3tgx8tgx=3tgx9tg2x+3tg3xtg3x3tg2x3tgx+1=0(tgx+1)(tg2x4tgx+1)=0tgx=1,tgx=4±1642=2±3.◼tgx=1tg2x=,tg3x=1tgx=23x={π12tg2x=33,tg3x=1tgx=2+3x={5π12tg2x=33,tg3x=1soinallcaseswehave:tg3x=1answer(c).way:2x+(x+π3)+(x+2π3)=π+3xtgx+tg(x+π3)+tg(x+2π3)=tgx.tg(x+π3)tg(x+2π3)tg(x+2π3)=tg(π(2π3+x))=tg(π3x)==tg(xπ3)tg3x=tgx.tg(x+π3)tg(xπ3)3tg3x=3tg3x=1answer(c).

Leave a Reply

Your email address will not be published. Required fields are marked *