Menu Close

If-tangent-line-of-equation-y-x-3-x-at-x-a-crossed-line-y-x-at-b-b-Find-b-in-terms-of-a-




Question Number 19812 by Joel577 last updated on 16/Aug/17
If tangent line of equation y = (x/(3 − x)) at   x = a crossed line y = x at (b,b)  Find b in terms of a
Iftangentlineofequationy=x3xatx=acrossedliney=xat(b,b)Findbintermsofa
Answered by ajfour last updated on 16/Aug/17
y=−1−(3/(x−3))     ⇒  (dy/dx)=(3/((x−3)^2 ))  (dy/dx)∣_(x=a) =(3/((a−3)^2 ))  Equation of tangent at x=a is    y−y_1 =((dy/dx))∣_(x=a) (x−a)  y_1 =(a/(3−a))  ,  so   y−((a/(3−a)))=(3/((a−3)^2 ))(x−a)  this tangent crosses y=x at (b,b)  so  (b,b) must satisfy tangent eqn.   b−(a/((3−a))) =((3(b−a))/((a−3)^2 ))    ((3b)/((a−3)^2 ))−b=((3a)/((a−3)^2 ))+(a/((a−3)))    at x=a=3 there is no function and   no tangent, so     b[3−(a−3)^2 ]=a(3+a−3)  ⇒   b=(a^2 /(3−(a−3)^2 )) .
y=13x3dydx=3(x3)2dydxx=a=3(a3)2Equationoftangentatx=aisyy1=(dydx)x=a(xa)y1=a3a,soy(a3a)=3(a3)2(xa)thistangentcrossesy=xat(b,b)so(b,b)mustsatisfytangenteqn.ba(3a)=3(ba)(a3)23b(a3)2b=3a(a3)2+a(a3)atx=a=3thereisnofunctionandnotangent,sob[3(a3)2]=a(3+a3)b=a23(a3)2.

Leave a Reply

Your email address will not be published. Required fields are marked *