Menu Close

if-tg-0-5x-2-find-sin-x-2-cos-x-3-




Question Number 148987 by mathdanisur last updated on 02/Aug/21
if   tg(0,5x) = −2  find   ((sin(x) + 2)/(cos(x) - 3)) = ?
$${if}\:\:\:{tg}\left(\mathrm{0},\mathrm{5}{x}\right)\:=\:−\mathrm{2} \\ $$$${find}\:\:\:\frac{{sin}\left({x}\right)\:+\:\mathrm{2}}{{cos}\left({x}\right)\:-\:\mathrm{3}}\:=\:? \\ $$
Answered by EDWIN88 last updated on 02/Aug/21
 tan ((1/2)x)=−2 → { (((1/2)x in 2^(nd)  quadrant)),(((1/2)x in 4^(th)  quadrant)) :}  ⇒((sin x+2)/(cos x−3)) = ((2sin (1/2)x cos (1/2)x+2)/(2cos^2 (1/2)x−4))  = ((2((2/( (√5))))(−(1/( (√5))))+2)/(2(−(1/( (√5))))^2 −4))  =(((−4+10)/5)/((2−20)/5)) = (6/(−18))=−(1/3)
$$\:\mathrm{tan}\:\left(\frac{\mathrm{1}}{\mathrm{2}}{x}\right)=−\mathrm{2}\:\rightarrow\begin{cases}{\frac{\mathrm{1}}{\mathrm{2}}{x}\:{in}\:\mathrm{2}^{{nd}} \:{quadrant}}\\{\frac{\mathrm{1}}{\mathrm{2}}{x}\:{in}\:\mathrm{4}^{{th}} \:{quadrant}}\end{cases} \\ $$$$\Rightarrow\frac{\mathrm{sin}\:{x}+\mathrm{2}}{\mathrm{cos}\:{x}−\mathrm{3}}\:=\:\frac{\mathrm{2sin}\:\frac{\mathrm{1}}{\mathrm{2}}{x}\:\mathrm{cos}\:\frac{\mathrm{1}}{\mathrm{2}}{x}+\mathrm{2}}{\mathrm{2cos}\:^{\mathrm{2}} \frac{\mathrm{1}}{\mathrm{2}}{x}−\mathrm{4}} \\ $$$$=\:\frac{\mathrm{2}\left(\frac{\mathrm{2}}{\:\sqrt{\mathrm{5}}}\right)\left(−\frac{\mathrm{1}}{\:\sqrt{\mathrm{5}}}\right)+\mathrm{2}}{\mathrm{2}\left(−\frac{\mathrm{1}}{\:\sqrt{\mathrm{5}}}\right)^{\mathrm{2}} −\mathrm{4}} \\ $$$$=\frac{\frac{−\mathrm{4}+\mathrm{10}}{\mathrm{5}}}{\frac{\mathrm{2}−\mathrm{20}}{\mathrm{5}}}\:=\:\frac{\mathrm{6}}{−\mathrm{18}}=−\frac{\mathrm{1}}{\mathrm{3}}\: \\ $$$$ \\ $$
Commented by mathdanisur last updated on 02/Aug/21
Thankyou Ser
$${Thankyou}\:{Ser} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *