Question Number 112908 by mohammad17 last updated on 10/Sep/20
$${if}\:{the}\:{angle}\:{between}\left(\:{kx}+\mathrm{5}{y}=\mathrm{1}\:,\:{kx}−\mathrm{2}{y}=\mathrm{2}\right){equal}\:\mathrm{60}^{°} {then}\:{k}=? \\ $$$$ \\ $$$${help}\:{me}\:{sir} \\ $$
Commented by mohammad17 last updated on 10/Sep/20
$${please}\:{sir}\:{im}\:{very}\:{need}\:{this} \\ $$
Answered by ajfour last updated on 10/Sep/20
$${y}={mx}+{c} \\ $$$${m}_{\mathrm{1}} =−\frac{{k}}{\mathrm{5}}\:\:,\:\:{m}_{\mathrm{2}} =\frac{{k}}{\mathrm{2}} \\ $$$$\frac{\frac{{k}}{\mathrm{2}}−\left(−\frac{{k}}{\mathrm{5}}\right)}{\mathrm{1}+\left(\frac{{k}}{\mathrm{2}}\right)\left(−\frac{{k}}{\mathrm{5}}\right)}=\mathrm{tan}\:\mathrm{60}°\:=\:\sqrt{\mathrm{3}} \\ $$$$\Rightarrow\:\:\:\mathrm{7}{k}=\sqrt{\mathrm{3}}\left(\mathrm{10}−{k}^{\mathrm{2}} \right) \\ $$$$\Rightarrow\:\:\:{k}^{\mathrm{2}} +\frac{\mathrm{7}{k}}{\:\sqrt{\mathrm{3}}}−\mathrm{10}\:=\:\mathrm{0} \\ $$$$\:\:\:\:\:\:\:{k}=−\frac{\mathrm{7}}{\mathrm{2}\sqrt{\mathrm{3}}}\pm\sqrt{\frac{\mathrm{49}}{\mathrm{12}}+\mathrm{10}} \\ $$$$\:\:\:\:\:\:{k}=−\frac{\mathrm{10}\sqrt{\mathrm{3}}}{\mathrm{3}}\:\:{or}\:\:=\:\sqrt{\mathrm{3}}\:. \\ $$
Answered by mathmax by abdo last updated on 11/Sep/20
$$\mathrm{u}\left(−\mathrm{5},\mathrm{k}\right)\:\:\mathrm{and}\:\mathrm{v}\left(\mathrm{2},\mathrm{k}\right)\:\:\:\left(\mathrm{u},\mathrm{v}\right)\:=\frac{\pi}{\mathrm{3}} \\ $$$$\mathrm{tan}\left(\mathrm{u},\mathrm{v}\right)\:=\frac{\mathrm{det}\left(\mathrm{u},\mathrm{v}\right)}{\mathrm{u}.\mathrm{v}}\:=\frac{\begin{vmatrix}{−\mathrm{5}\:\:\:\:\:\:\:\:\:\mathrm{2}}\\{\mathrm{k}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{k}}\end{vmatrix}}{\mathrm{k}^{\mathrm{2}} −\mathrm{10}}\:=\sqrt{\mathrm{3}\:}\:\Rightarrow\frac{−\mathrm{7k}}{\mathrm{k}^{\mathrm{2}} −\mathrm{10}}\:=\sqrt{\mathrm{3}}\:\Rightarrow \\ $$$$−\mathrm{7k}\:=\sqrt{\mathrm{3}}\mathrm{k}^{\mathrm{2}} −\mathrm{10}\sqrt{\mathrm{3}}\:\Rightarrow\sqrt{\mathrm{3}}\mathrm{k}^{\mathrm{2}} \:+\mathrm{7k}\:−\mathrm{10}\sqrt{\mathrm{3}}=\mathrm{0} \\ $$$$\Delta\:=\mathrm{49}+\mathrm{4}.\mathrm{10}.\mathrm{3}\:=\mathrm{49}\:+\mathrm{120}\:=\mathrm{169}\:\Rightarrow\mathrm{k}_{\mathrm{1}} =\frac{−\mathrm{7}+\mathrm{13}}{\mathrm{2}\sqrt{\mathrm{3}}}\:=\frac{\mathrm{6}}{\mathrm{2}\sqrt{\mathrm{3}}}\:=\sqrt{\mathrm{3}} \\ $$$$\mathrm{k}_{\mathrm{2}} =\frac{−\mathrm{7}−\mathrm{13}}{\mathrm{2}\sqrt{\mathrm{3}}}\:=\frac{−\mathrm{20}}{\mathrm{2}\sqrt{\mathrm{3}}}\:=\frac{−\mathrm{10}}{\:\sqrt{\mathrm{3}}} \\ $$