Menu Close

If-the-angle-between-the-vectors-c-ai-2j-and-d-3i-j-is-45-find-the-two-possible-values-of-a-




Question Number 190811 by otchereabdullai last updated on 12/Apr/23
 If the angle between the vectors   c =ai+2j and  d=3i+j is 45° , find   the two possible values of a
$$\:{If}\:{the}\:{angle}\:{between}\:{the}\:{vectors} \\ $$$$\:{c}\:={ai}+\mathrm{2}{j}\:{and}\:\:{d}=\mathrm{3}{i}+{j}\:{is}\:\mathrm{45}°\:,\:{find} \\ $$$$\:{the}\:{two}\:{possible}\:{values}\:{of}\:{a} \\ $$
Answered by safojontoshtemirov last updated on 12/Apr/23
c=(a;2) d=(3;1)  cd=∣c∣∣d∣cosa  3a+2=(√(a^2 +4))∙(√5)  9a^2 +12a+4=5a^2 +20  4a^2 +12a−16=0  a^2 +3a−4=0  a=−4  a=1
$${c}=\left({a};\mathrm{2}\right)\:{d}=\left(\mathrm{3};\mathrm{1}\right) \\ $$$${cd}=\mid{c}\mid\mid{d}\mid{cosa} \\ $$$$\mathrm{3}{a}+\mathrm{2}=\sqrt{{a}^{\mathrm{2}} +\mathrm{4}}\centerdot\sqrt{\mathrm{5}} \\ $$$$\mathrm{9}{a}^{\mathrm{2}} +\mathrm{12}{a}+\mathrm{4}=\mathrm{5}{a}^{\mathrm{2}} +\mathrm{20} \\ $$$$\mathrm{4}{a}^{\mathrm{2}} +\mathrm{12}{a}−\mathrm{16}=\mathrm{0} \\ $$$${a}^{\mathrm{2}} +\mathrm{3}{a}−\mathrm{4}=\mathrm{0} \\ $$$${a}=−\mathrm{4}\:\:{a}=\mathrm{1} \\ $$
Commented by otchereabdullai last updated on 12/Apr/23
God bless you sir!
$${God}\:{bless}\:{you}\:{sir}! \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *