Menu Close

If-the-angles-of-a-triangle-ABC-be-in-A-P-then-1-c-2-a-2-b-2-ab-2-b-2-a-2-c-2-ac-3-a-2-b-2-c-2-ac-4-b-2-a-2-c-2-




Question Number 15894 by Tinkutara last updated on 15/Jun/17
If the angles of a triangle ABC be in  A.P., then  (1) c^2  = a^2  + b^2  − ab  (2) b^2  = a^2  + c^2  − ac  (3) a^2  = b^2  + c^2  − ac  (4) b^2  = a^2  + c^2
IftheanglesofatriangleABCbeinA.P.,then(1)c2=a2+b2ab(2)b2=a2+c2ac(3)a2=b2+c2ac(4)b2=a2+c2
Commented by ajfour last updated on 15/Jun/17
(2) is correct , if ∠B=π/3    2cacos B=c^2 +a^2 −b^2    with cos B=π/3   b^2 =c^2 +a^2 −ac .  And one of the angles need be π/3.  if 2B=A+C  then       2B=π−B          B=π/3 .  Any one of (1), (2), or (3) can  be correct depending on which  angle is π/3 .
(2)iscorrect,ifB=π/32cacosB=c2+a2b2withcosB=π/3b2=c2+a2ac.Andoneoftheanglesneedbeπ/3.if2B=A+Cthen2B=πBB=π/3.Anyoneof(1),(2),or(3)canbecorrectdependingonwhichangleisπ/3.
Commented by Tinkutara last updated on 16/Jun/17
Thanks Sir!
ThanksSir!

Leave a Reply

Your email address will not be published. Required fields are marked *