Menu Close

If-the-arithmetic-mean-of-a-and-b-is-a-n-1-b-n-1-2-show-that-n-0-




Question Number 28320 by NECx last updated on 24/Jan/18
If the arithmetic mean of a and  b is ((a^(n+1) +b^(n+1) )/2), show that n=0
$${If}\:{the}\:{arithmetic}\:{mean}\:{of}\:{a}\:{and} \\ $$$${b}\:{is}\:\frac{{a}^{{n}+\mathrm{1}} +{b}^{{n}+\mathrm{1}} }{\mathrm{2}},\:{show}\:{that}\:{n}=\mathrm{0} \\ $$
Commented by mrW2 last updated on 24/Jan/18
this is not always true, sir.  e.g. if a=b=1, or if a=1 and b=0, n  can be any value.
$${this}\:{is}\:{not}\:{always}\:{true},\:{sir}. \\ $$$${e}.{g}.\:{if}\:{a}={b}=\mathrm{1},\:{or}\:{if}\:{a}=\mathrm{1}\:{and}\:{b}=\mathrm{0},\:{n} \\ $$$${can}\:{be}\:{any}\:{value}. \\ $$
Commented by NECx last updated on 24/Jan/18
thanks for the correction
$${thanks}\:{for}\:{the}\:{correction} \\ $$
Commented by abdo imad last updated on 24/Jan/18
((a^(n+1)  +b^(n+1) )/2) = ((a+b)/2) ⇔ a^(n+1) −a =b^(n+1) −b ∀a andb   ⇒(∂/∂a)( a^(n+1) −a)=0 for bfixed ⇒(n+1)a^n −1=0  ∀a  ⇒(n+1)a^n  =1   ∀a ⇒n=0
$$\frac{{a}^{{n}+\mathrm{1}} \:+{b}^{{n}+\mathrm{1}} }{\mathrm{2}}\:=\:\frac{{a}+{b}}{\mathrm{2}}\:\Leftrightarrow\:{a}^{{n}+\mathrm{1}} −{a}\:={b}^{{n}+\mathrm{1}} −{b}\:\forall{a}\:{andb}\: \\ $$$$\Rightarrow\frac{\partial}{\partial{a}}\left(\:{a}^{{n}+\mathrm{1}} −{a}\right)=\mathrm{0}\:{for}\:{bfixed}\:\Rightarrow\left({n}+\mathrm{1}\right){a}^{{n}} −\mathrm{1}=\mathrm{0}\:\:\forall{a} \\ $$$$\Rightarrow\left({n}+\mathrm{1}\right){a}^{{n}} \:=\mathrm{1}\:\:\:\forall{a}\:\Rightarrow{n}=\mathrm{0} \\ $$$$ \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *